This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hom-sets of the constructed category which depend on an arbitrary definition. (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| prstcnid.k | |- ( ph -> K e. Proset ) |
||
| prstchomval.l | |- ( ph -> .<_ = ( le ` C ) ) |
||
| Assertion | prstchomval | |- ( ph -> ( .<_ X. { 1o } ) = ( Hom ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | prstcnid.k | |- ( ph -> K e. Proset ) |
|
| 3 | prstchomval.l | |- ( ph -> .<_ = ( le ` C ) ) |
|
| 4 | homid | |- Hom = Slot ( Hom ` ndx ) |
|
| 5 | slotsbhcdif | |- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
|
| 6 | 5 | simp3i | |- ( Hom ` ndx ) =/= ( comp ` ndx ) |
| 7 | 1 2 4 6 | prstcnidlem | |- ( ph -> ( Hom ` C ) = ( Hom ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) ) |
| 8 | fvex | |- ( le ` K ) e. _V |
|
| 9 | snex | |- { 1o } e. _V |
|
| 10 | 8 9 | xpex | |- ( ( le ` K ) X. { 1o } ) e. _V |
| 11 | 4 | setsid | |- ( ( K e. Proset /\ ( ( le ` K ) X. { 1o } ) e. _V ) -> ( ( le ` K ) X. { 1o } ) = ( Hom ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) ) |
| 12 | 2 10 11 | sylancl | |- ( ph -> ( ( le ` K ) X. { 1o } ) = ( Hom ` ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) ) |
| 13 | eqidd | |- ( ph -> ( le ` K ) = ( le ` K ) ) |
|
| 14 | 1 2 13 | prstcleval | |- ( ph -> ( le ` K ) = ( le ` C ) ) |
| 15 | 14 3 | eqtr4d | |- ( ph -> ( le ` K ) = .<_ ) |
| 16 | 15 | xpeq1d | |- ( ph -> ( ( le ` K ) X. { 1o } ) = ( .<_ X. { 1o } ) ) |
| 17 | 7 12 16 | 3eqtr2rd | |- ( ph -> ( .<_ X. { 1o } ) = ( Hom ` C ) ) |