This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prstcnidlem and prstcthin . (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| prstcnid.k | |- ( ph -> K e. Proset ) |
||
| Assertion | prstcval | |- ( ph -> C = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | prstcnid.k | |- ( ph -> K e. Proset ) |
|
| 3 | id | |- ( k = K -> k = K ) |
|
| 4 | fveq2 | |- ( k = K -> ( le ` k ) = ( le ` K ) ) |
|
| 5 | 4 | xpeq1d | |- ( k = K -> ( ( le ` k ) X. { 1o } ) = ( ( le ` K ) X. { 1o } ) ) |
| 6 | 5 | opeq2d | |- ( k = K -> <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. = <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) |
| 7 | 3 6 | oveq12d | |- ( k = K -> ( k sSet <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. ) = ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) ) |
| 8 | 7 | oveq1d | |- ( k = K -> ( ( k sSet <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
| 9 | df-prstc | |- ProsetToCat = ( k e. Proset |-> ( ( k sSet <. ( Hom ` ndx ) , ( ( le ` k ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
|
| 10 | ovex | |- ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) e. _V |
|
| 11 | 8 9 10 | fvmpt | |- ( K e. Proset -> ( ProsetToCat ` K ) = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
| 12 | 2 11 | syl | |- ( ph -> ( ProsetToCat ` K ) = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |
| 13 | 1 12 | eqtrd | |- ( ph -> C = ( ( K sSet <. ( Hom ` ndx ) , ( ( le ` K ) X. { 1o } ) >. ) sSet <. ( comp ` ndx ) , (/) >. ) ) |