This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decomposing signed reals into positive reals. Lemma for addsrpr and mulsrpr . (Contributed by Jim Kingdon, 30-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prsrlem1 | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) /\ ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) /\ ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrer | |- ~R Er ( P. X. P. ) |
|
| 2 | erdm | |- ( ~R Er ( P. X. P. ) -> dom ~R = ( P. X. P. ) ) |
|
| 3 | 1 2 | ax-mp | |- dom ~R = ( P. X. P. ) |
| 4 | simprll | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> A = [ <. w , v >. ] ~R ) |
|
| 5 | simpll | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> A e. ( ( P. X. P. ) /. ~R ) ) |
|
| 6 | 4 5 | eqeltrrd | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. w , v >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 7 | ecelqsdm | |- ( ( dom ~R = ( P. X. P. ) /\ [ <. w , v >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) -> <. w , v >. e. ( P. X. P. ) ) |
|
| 8 | 3 6 7 | sylancr | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. w , v >. e. ( P. X. P. ) ) |
| 9 | opelxp | |- ( <. w , v >. e. ( P. X. P. ) <-> ( w e. P. /\ v e. P. ) ) |
|
| 10 | 8 9 | sylib | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( w e. P. /\ v e. P. ) ) |
| 11 | simprrl | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> A = [ <. s , f >. ] ~R ) |
|
| 12 | 11 5 | eqeltrrd | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. s , f >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 13 | ecelqsdm | |- ( ( dom ~R = ( P. X. P. ) /\ [ <. s , f >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) -> <. s , f >. e. ( P. X. P. ) ) |
|
| 14 | 3 12 13 | sylancr | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. s , f >. e. ( P. X. P. ) ) |
| 15 | opelxp | |- ( <. s , f >. e. ( P. X. P. ) <-> ( s e. P. /\ f e. P. ) ) |
|
| 16 | 14 15 | sylib | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( s e. P. /\ f e. P. ) ) |
| 17 | 10 16 | jca | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) ) |
| 18 | simprlr | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> B = [ <. u , t >. ] ~R ) |
|
| 19 | simplr | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> B e. ( ( P. X. P. ) /. ~R ) ) |
|
| 20 | 18 19 | eqeltrrd | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. u , t >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 21 | ecelqsdm | |- ( ( dom ~R = ( P. X. P. ) /\ [ <. u , t >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) -> <. u , t >. e. ( P. X. P. ) ) |
|
| 22 | 3 20 21 | sylancr | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. u , t >. e. ( P. X. P. ) ) |
| 23 | opelxp | |- ( <. u , t >. e. ( P. X. P. ) <-> ( u e. P. /\ t e. P. ) ) |
|
| 24 | 22 23 | sylib | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( u e. P. /\ t e. P. ) ) |
| 25 | simprrr | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> B = [ <. g , h >. ] ~R ) |
|
| 26 | 25 19 | eqeltrrd | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. g , h >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 27 | ecelqsdm | |- ( ( dom ~R = ( P. X. P. ) /\ [ <. g , h >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) -> <. g , h >. e. ( P. X. P. ) ) |
|
| 28 | 3 26 27 | sylancr | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. g , h >. e. ( P. X. P. ) ) |
| 29 | opelxp | |- ( <. g , h >. e. ( P. X. P. ) <-> ( g e. P. /\ h e. P. ) ) |
|
| 30 | 28 29 | sylib | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( g e. P. /\ h e. P. ) ) |
| 31 | 24 30 | jca | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) |
| 32 | 4 11 | eqtr3d | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. w , v >. ] ~R = [ <. s , f >. ] ~R ) |
| 33 | 1 | a1i | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ~R Er ( P. X. P. ) ) |
| 34 | 33 8 | erth | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( <. w , v >. ~R <. s , f >. <-> [ <. w , v >. ] ~R = [ <. s , f >. ] ~R ) ) |
| 35 | 32 34 | mpbird | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. w , v >. ~R <. s , f >. ) |
| 36 | df-enr | |- ~R = { <. x , y >. | ( ( x e. ( P. X. P. ) /\ y e. ( P. X. P. ) ) /\ E. a E. b E. c E. d ( ( x = <. a , b >. /\ y = <. c , d >. ) /\ ( a +P. d ) = ( b +P. c ) ) ) } |
|
| 37 | 36 | ecopoveq | |- ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) -> ( <. w , v >. ~R <. s , f >. <-> ( w +P. f ) = ( v +P. s ) ) ) |
| 38 | 10 16 37 | syl2anc | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( <. w , v >. ~R <. s , f >. <-> ( w +P. f ) = ( v +P. s ) ) ) |
| 39 | 35 38 | mpbid | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( w +P. f ) = ( v +P. s ) ) |
| 40 | 18 25 | eqtr3d | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. u , t >. ] ~R = [ <. g , h >. ] ~R ) |
| 41 | 33 22 | erth | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( <. u , t >. ~R <. g , h >. <-> [ <. u , t >. ] ~R = [ <. g , h >. ] ~R ) ) |
| 42 | 40 41 | mpbird | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. u , t >. ~R <. g , h >. ) |
| 43 | 36 | ecopoveq | |- ( ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) -> ( <. u , t >. ~R <. g , h >. <-> ( u +P. h ) = ( t +P. g ) ) ) |
| 44 | 24 30 43 | syl2anc | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( <. u , t >. ~R <. g , h >. <-> ( u +P. h ) = ( t +P. g ) ) ) |
| 45 | 42 44 | mpbid | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( u +P. h ) = ( t +P. g ) ) |
| 46 | 39 45 | jca | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) ) |
| 47 | 17 31 46 | jca31 | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) /\ ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) /\ ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) ) ) |