This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers df-c , and is intended to be used only by the construction. From Proposition 9-4.1 of Gleason p. 126. (Contributed by NM, 25-Jul-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-enr | |- ~R = { <. x , y >. | ( ( x e. ( P. X. P. ) /\ y e. ( P. X. P. ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cer | |- ~R |
|
| 1 | vx | |- x |
|
| 2 | vy | |- y |
|
| 3 | 1 | cv | |- x |
| 4 | cnp | |- P. |
|
| 5 | 4 4 | cxp | |- ( P. X. P. ) |
| 6 | 3 5 | wcel | |- x e. ( P. X. P. ) |
| 7 | 2 | cv | |- y |
| 8 | 7 5 | wcel | |- y e. ( P. X. P. ) |
| 9 | 6 8 | wa | |- ( x e. ( P. X. P. ) /\ y e. ( P. X. P. ) ) |
| 10 | vz | |- z |
|
| 11 | vw | |- w |
|
| 12 | vv | |- v |
|
| 13 | vu | |- u |
|
| 14 | 10 | cv | |- z |
| 15 | 11 | cv | |- w |
| 16 | 14 15 | cop | |- <. z , w >. |
| 17 | 3 16 | wceq | |- x = <. z , w >. |
| 18 | 12 | cv | |- v |
| 19 | 13 | cv | |- u |
| 20 | 18 19 | cop | |- <. v , u >. |
| 21 | 7 20 | wceq | |- y = <. v , u >. |
| 22 | 17 21 | wa | |- ( x = <. z , w >. /\ y = <. v , u >. ) |
| 23 | cpp | |- +P. |
|
| 24 | 14 19 23 | co | |- ( z +P. u ) |
| 25 | 15 18 23 | co | |- ( w +P. v ) |
| 26 | 24 25 | wceq | |- ( z +P. u ) = ( w +P. v ) |
| 27 | 22 26 | wa | |- ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) |
| 28 | 27 13 | wex | |- E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) |
| 29 | 28 12 | wex | |- E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) |
| 30 | 29 11 | wex | |- E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) |
| 31 | 30 10 | wex | |- E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) |
| 32 | 9 31 | wa | |- ( ( x e. ( P. X. P. ) /\ y e. ( P. X. P. ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) ) |
| 33 | 32 1 2 | copab | |- { <. x , y >. | ( ( x e. ( P. X. P. ) /\ y e. ( P. X. P. ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) ) } |
| 34 | 0 33 | wceq | |- ~R = { <. x , y >. | ( ( x e. ( P. X. P. ) /\ y e. ( P. X. P. ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z +P. u ) = ( w +P. v ) ) ) } |