This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsrmo | |- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> E* z E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrer | |- ~R Er ( P. X. P. ) |
|
| 2 | 1 | a1i | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ~R Er ( P. X. P. ) ) |
| 3 | prsrlem1 | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> ( ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) /\ ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) /\ ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) ) ) |
|
| 4 | addcmpblnr | |- ( ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) /\ ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) -> ( ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) -> <. ( w +P. u ) , ( v +P. t ) >. ~R <. ( s +P. g ) , ( f +P. h ) >. ) ) |
|
| 5 | 4 | imp | |- ( ( ( ( ( w e. P. /\ v e. P. ) /\ ( s e. P. /\ f e. P. ) ) /\ ( ( u e. P. /\ t e. P. ) /\ ( g e. P. /\ h e. P. ) ) ) /\ ( ( w +P. f ) = ( v +P. s ) /\ ( u +P. h ) = ( t +P. g ) ) ) -> <. ( w +P. u ) , ( v +P. t ) >. ~R <. ( s +P. g ) , ( f +P. h ) >. ) |
| 6 | 3 5 | syl | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> <. ( w +P. u ) , ( v +P. t ) >. ~R <. ( s +P. g ) , ( f +P. h ) >. ) |
| 7 | 2 6 | erthi | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) |
| 8 | 7 | adantrlr | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) -> [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) |
| 9 | 8 | adantrrr | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) ) ) -> [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) |
| 10 | simprlr | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) ) ) -> z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) |
|
| 11 | simprrr | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) ) ) -> q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) |
|
| 12 | 9 10 11 | 3eqtr4d | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) ) ) -> z = q ) |
| 13 | 12 | expr | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) -> ( ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) -> z = q ) ) |
| 14 | 13 | exlimdvv | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) -> ( E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) -> z = q ) ) |
| 15 | 14 | exlimdvv | |- ( ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) /\ ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) -> ( E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) -> z = q ) ) |
| 16 | 15 | ex | |- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) -> ( E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) -> z = q ) ) ) |
| 17 | 16 | exlimdvv | |- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> ( E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) -> ( E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) -> z = q ) ) ) |
| 18 | 17 | exlimdvv | |- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) -> ( E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) -> z = q ) ) ) |
| 19 | 18 | impd | |- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) ) -> z = q ) ) |
| 20 | 19 | alrimivv | |- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) ) -> z = q ) ) |
| 21 | opeq12 | |- ( ( w = s /\ v = f ) -> <. w , v >. = <. s , f >. ) |
|
| 22 | 21 | eceq1d | |- ( ( w = s /\ v = f ) -> [ <. w , v >. ] ~R = [ <. s , f >. ] ~R ) |
| 23 | 22 | eqeq2d | |- ( ( w = s /\ v = f ) -> ( A = [ <. w , v >. ] ~R <-> A = [ <. s , f >. ] ~R ) ) |
| 24 | 23 | anbi1d | |- ( ( w = s /\ v = f ) -> ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) <-> ( A = [ <. s , f >. ] ~R /\ B = [ <. u , t >. ] ~R ) ) ) |
| 25 | simpl | |- ( ( w = s /\ v = f ) -> w = s ) |
|
| 26 | 25 | oveq1d | |- ( ( w = s /\ v = f ) -> ( w +P. u ) = ( s +P. u ) ) |
| 27 | simpr | |- ( ( w = s /\ v = f ) -> v = f ) |
|
| 28 | 27 | oveq1d | |- ( ( w = s /\ v = f ) -> ( v +P. t ) = ( f +P. t ) ) |
| 29 | 26 28 | opeq12d | |- ( ( w = s /\ v = f ) -> <. ( w +P. u ) , ( v +P. t ) >. = <. ( s +P. u ) , ( f +P. t ) >. ) |
| 30 | 29 | eceq1d | |- ( ( w = s /\ v = f ) -> [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R = [ <. ( s +P. u ) , ( f +P. t ) >. ] ~R ) |
| 31 | 30 | eqeq2d | |- ( ( w = s /\ v = f ) -> ( q = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R <-> q = [ <. ( s +P. u ) , ( f +P. t ) >. ] ~R ) ) |
| 32 | 24 31 | anbi12d | |- ( ( w = s /\ v = f ) -> ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) <-> ( ( A = [ <. s , f >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( s +P. u ) , ( f +P. t ) >. ] ~R ) ) ) |
| 33 | opeq12 | |- ( ( u = g /\ t = h ) -> <. u , t >. = <. g , h >. ) |
|
| 34 | 33 | eceq1d | |- ( ( u = g /\ t = h ) -> [ <. u , t >. ] ~R = [ <. g , h >. ] ~R ) |
| 35 | 34 | eqeq2d | |- ( ( u = g /\ t = h ) -> ( B = [ <. u , t >. ] ~R <-> B = [ <. g , h >. ] ~R ) ) |
| 36 | 35 | anbi2d | |- ( ( u = g /\ t = h ) -> ( ( A = [ <. s , f >. ] ~R /\ B = [ <. u , t >. ] ~R ) <-> ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) ) ) |
| 37 | simpl | |- ( ( u = g /\ t = h ) -> u = g ) |
|
| 38 | 37 | oveq2d | |- ( ( u = g /\ t = h ) -> ( s +P. u ) = ( s +P. g ) ) |
| 39 | simpr | |- ( ( u = g /\ t = h ) -> t = h ) |
|
| 40 | 39 | oveq2d | |- ( ( u = g /\ t = h ) -> ( f +P. t ) = ( f +P. h ) ) |
| 41 | 38 40 | opeq12d | |- ( ( u = g /\ t = h ) -> <. ( s +P. u ) , ( f +P. t ) >. = <. ( s +P. g ) , ( f +P. h ) >. ) |
| 42 | 41 | eceq1d | |- ( ( u = g /\ t = h ) -> [ <. ( s +P. u ) , ( f +P. t ) >. ] ~R = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) |
| 43 | 42 | eqeq2d | |- ( ( u = g /\ t = h ) -> ( q = [ <. ( s +P. u ) , ( f +P. t ) >. ] ~R <-> q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) ) |
| 44 | 36 43 | anbi12d | |- ( ( u = g /\ t = h ) -> ( ( ( A = [ <. s , f >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( s +P. u ) , ( f +P. t ) >. ] ~R ) <-> ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) ) ) |
| 45 | 32 44 | cbvex4vw | |- ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) <-> E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) ) |
| 46 | 45 | anbi2i | |- ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) <-> ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) ) ) |
| 47 | 46 | imbi1i | |- ( ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) -> z = q ) <-> ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) ) -> z = q ) ) |
| 48 | 47 | 2albii | |- ( A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) -> z = q ) <-> A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ E. s E. f E. g E. h ( ( A = [ <. s , f >. ] ~R /\ B = [ <. g , h >. ] ~R ) /\ q = [ <. ( s +P. g ) , ( f +P. h ) >. ] ~R ) ) -> z = q ) ) |
| 49 | 20 48 | sylibr | |- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) -> z = q ) ) |
| 50 | eqeq1 | |- ( z = q -> ( z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R <-> q = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) |
|
| 51 | 50 | anbi2d | |- ( z = q -> ( ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) <-> ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) ) |
| 52 | 51 | 4exbidv | |- ( z = q -> ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) <-> E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) ) |
| 53 | 52 | mo4 | |- ( E* z E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) <-> A. z A. q ( ( E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) /\ E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ q = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) -> z = q ) ) |
| 54 | 49 53 | sylibr | |- ( ( A e. ( ( P. X. P. ) /. ~R ) /\ B e. ( ( P. X. P. ) /. ~R ) ) -> E* z E. w E. v E. u E. t ( ( A = [ <. w , v >. ] ~R /\ B = [ <. u , t >. ] ~R ) /\ z = [ <. ( w +P. u ) , ( v +P. t ) >. ] ~R ) ) |