This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt2.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
| prdsbasmpt2.b | |- B = ( Base ` Y ) |
||
| prdsbasmpt2.s | |- ( ph -> S e. V ) |
||
| prdsbasmpt2.i | |- ( ph -> I e. W ) |
||
| prdsbasmpt2.r | |- ( ph -> A. x e. I R e. X ) |
||
| prdsdsval2.f | |- ( ph -> F e. B ) |
||
| prdsdsval2.g | |- ( ph -> G e. B ) |
||
| prdsdsval3.k | |- K = ( Base ` R ) |
||
| prdsdsval3.e | |- E = ( ( dist ` R ) |` ( K X. K ) ) |
||
| prdsdsval3.d | |- D = ( dist ` Y ) |
||
| Assertion | prdsdsval3 | |- ( ph -> ( F D G ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
| 2 | prdsbasmpt2.b | |- B = ( Base ` Y ) |
|
| 3 | prdsbasmpt2.s | |- ( ph -> S e. V ) |
|
| 4 | prdsbasmpt2.i | |- ( ph -> I e. W ) |
|
| 5 | prdsbasmpt2.r | |- ( ph -> A. x e. I R e. X ) |
|
| 6 | prdsdsval2.f | |- ( ph -> F e. B ) |
|
| 7 | prdsdsval2.g | |- ( ph -> G e. B ) |
|
| 8 | prdsdsval3.k | |- K = ( Base ` R ) |
|
| 9 | prdsdsval3.e | |- E = ( ( dist ` R ) |` ( K X. K ) ) |
|
| 10 | prdsdsval3.d | |- D = ( dist ` Y ) |
|
| 11 | eqid | |- ( dist ` R ) = ( dist ` R ) |
|
| 12 | 1 2 3 4 5 6 7 11 10 | prdsdsval2 | |- ( ph -> ( F D G ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) ( dist ` R ) ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 13 | eqidd | |- ( ph -> I = I ) |
|
| 14 | 1 2 3 4 5 8 6 | prdsbascl | |- ( ph -> A. x e. I ( F ` x ) e. K ) |
| 15 | 1 2 3 4 5 8 7 | prdsbascl | |- ( ph -> A. x e. I ( G ` x ) e. K ) |
| 16 | 9 | oveqi | |- ( ( F ` x ) E ( G ` x ) ) = ( ( F ` x ) ( ( dist ` R ) |` ( K X. K ) ) ( G ` x ) ) |
| 17 | ovres | |- ( ( ( F ` x ) e. K /\ ( G ` x ) e. K ) -> ( ( F ` x ) ( ( dist ` R ) |` ( K X. K ) ) ( G ` x ) ) = ( ( F ` x ) ( dist ` R ) ( G ` x ) ) ) |
|
| 18 | 16 17 | eqtrid | |- ( ( ( F ` x ) e. K /\ ( G ` x ) e. K ) -> ( ( F ` x ) E ( G ` x ) ) = ( ( F ` x ) ( dist ` R ) ( G ` x ) ) ) |
| 19 | 18 | ex | |- ( ( F ` x ) e. K -> ( ( G ` x ) e. K -> ( ( F ` x ) E ( G ` x ) ) = ( ( F ` x ) ( dist ` R ) ( G ` x ) ) ) ) |
| 20 | 19 | ral2imi | |- ( A. x e. I ( F ` x ) e. K -> ( A. x e. I ( G ` x ) e. K -> A. x e. I ( ( F ` x ) E ( G ` x ) ) = ( ( F ` x ) ( dist ` R ) ( G ` x ) ) ) ) |
| 21 | 14 15 20 | sylc | |- ( ph -> A. x e. I ( ( F ` x ) E ( G ` x ) ) = ( ( F ` x ) ( dist ` R ) ( G ` x ) ) ) |
| 22 | mpteq12 | |- ( ( I = I /\ A. x e. I ( ( F ` x ) E ( G ` x ) ) = ( ( F ` x ) ( dist ` R ) ( G ` x ) ) ) -> ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) = ( x e. I |-> ( ( F ` x ) ( dist ` R ) ( G ` x ) ) ) ) |
|
| 23 | 13 21 22 | syl2anc | |- ( ph -> ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) = ( x e. I |-> ( ( F ` x ) ( dist ` R ) ( G ` x ) ) ) ) |
| 24 | 23 | rneqd | |- ( ph -> ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) = ran ( x e. I |-> ( ( F ` x ) ( dist ` R ) ( G ` x ) ) ) ) |
| 25 | 24 | uneq1d | |- ( ph -> ( ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) u. { 0 } ) = ( ran ( x e. I |-> ( ( F ` x ) ( dist ` R ) ( G ` x ) ) ) u. { 0 } ) ) |
| 26 | 25 | supeq1d | |- ( ph -> sup ( ( ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) u. { 0 } ) , RR* , < ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) ( dist ` R ) ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 27 | 12 26 | eqtr4d | |- ( ph -> ( F D G ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) |