This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double subtraction. (Contributed by NM, 30-Jun-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsub2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( A + ( C - B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | |- ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
|
| 2 | 1 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
| 3 | simp1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
|
| 4 | simp3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
|
| 5 | simp2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> B e. CC ) |
|
| 6 | subcl | |- ( ( C e. CC /\ B e. CC ) -> ( C - B ) e. CC ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( C - B ) e. CC ) |
| 8 | 2 3 7 | add12d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) + ( A + ( C - B ) ) ) = ( A + ( ( B - C ) + ( C - B ) ) ) ) |
| 9 | npncan2 | |- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) + ( C - B ) ) = 0 ) |
|
| 10 | 9 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) + ( C - B ) ) = 0 ) |
| 11 | 10 | oveq2d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( ( B - C ) + ( C - B ) ) ) = ( A + 0 ) ) |
| 12 | 3 | addridd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + 0 ) = A ) |
| 13 | 8 11 12 | 3eqtrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) + ( A + ( C - B ) ) ) = A ) |
| 14 | 3 7 | addcld | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( C - B ) ) e. CC ) |
| 15 | subadd | |- ( ( A e. CC /\ ( B - C ) e. CC /\ ( A + ( C - B ) ) e. CC ) -> ( ( A - ( B - C ) ) = ( A + ( C - B ) ) <-> ( ( B - C ) + ( A + ( C - B ) ) ) = A ) ) |
|
| 16 | 3 2 14 15 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - ( B - C ) ) = ( A + ( C - B ) ) <-> ( ( B - C ) + ( A + ( C - B ) ) ) = A ) ) |
| 17 | 13 16 | mpbird | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( A + ( C - B ) ) ) |