This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsub4 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) - ( C + D ) ) = ( ( A - C ) + ( B - D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> A e. CC ) |
|
| 2 | simplr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> B e. CC ) |
|
| 3 | simprl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> C e. CC ) |
|
| 4 | addsub | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - C ) = ( ( A - C ) + B ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) - C ) = ( ( A - C ) + B ) ) |
| 6 | 5 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) - C ) - D ) = ( ( ( A - C ) + B ) - D ) ) |
| 7 | 1 2 | addcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A + B ) e. CC ) |
| 8 | simprr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> D e. CC ) |
|
| 9 | subsub4 | |- ( ( ( A + B ) e. CC /\ C e. CC /\ D e. CC ) -> ( ( ( A + B ) - C ) - D ) = ( ( A + B ) - ( C + D ) ) ) |
|
| 10 | 7 3 8 9 | syl3anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) - C ) - D ) = ( ( A + B ) - ( C + D ) ) ) |
| 11 | subcl | |- ( ( A e. CC /\ C e. CC ) -> ( A - C ) e. CC ) |
|
| 12 | 11 | ad2ant2r | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A - C ) e. CC ) |
| 13 | addsubass | |- ( ( ( A - C ) e. CC /\ B e. CC /\ D e. CC ) -> ( ( ( A - C ) + B ) - D ) = ( ( A - C ) + ( B - D ) ) ) |
|
| 14 | 12 2 8 13 | syl3anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A - C ) + B ) - D ) = ( ( A - C ) + ( B - D ) ) ) |
| 15 | 6 10 14 | 3eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) - ( C + D ) ) = ( ( A - C ) + ( B - D ) ) ) |