This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 18-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ppival2 | |- ( A e. ZZ -> ( ppi ` A ) = ( # ` ( ( 2 ... A ) i^i Prime ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 2 | ppival | |- ( A e. RR -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) ) |
|
| 3 | 1 2 | syl | |- ( A e. ZZ -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) ) |
| 4 | ppisval | |- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
|
| 5 | 1 4 | syl | |- ( A e. ZZ -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 6 | flid | |- ( A e. ZZ -> ( |_ ` A ) = A ) |
|
| 7 | 6 | oveq2d | |- ( A e. ZZ -> ( 2 ... ( |_ ` A ) ) = ( 2 ... A ) ) |
| 8 | 7 | ineq1d | |- ( A e. ZZ -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) = ( ( 2 ... A ) i^i Prime ) ) |
| 9 | 5 8 | eqtrd | |- ( A e. ZZ -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... A ) i^i Prime ) ) |
| 10 | 9 | fveq2d | |- ( A e. ZZ -> ( # ` ( ( 0 [,] A ) i^i Prime ) ) = ( # ` ( ( 2 ... A ) i^i Prime ) ) ) |
| 11 | 3 10 | eqtrd | |- ( A e. ZZ -> ( ppi ` A ) = ( # ` ( ( 2 ... A ) i^i Prime ) ) ) |