This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pospo.b | |- B = ( Base ` K ) |
|
| pospo.l | |- .<_ = ( le ` K ) |
||
| pospo.s | |- .< = ( lt ` K ) |
||
| Assertion | pospo | |- ( K e. V -> ( K e. Poset <-> ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pospo.b | |- B = ( Base ` K ) |
|
| 2 | pospo.l | |- .<_ = ( le ` K ) |
|
| 3 | pospo.s | |- .< = ( lt ` K ) |
|
| 4 | 3 | pltirr | |- ( ( K e. Poset /\ x e. B ) -> -. x .< x ) |
| 5 | 1 3 | plttr | |- ( ( K e. Poset /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .< y /\ y .< z ) -> x .< z ) ) |
| 6 | 4 5 | ispod | |- ( K e. Poset -> .< Po B ) |
| 7 | relres | |- Rel ( _I |` B ) |
|
| 8 | 7 | a1i | |- ( K e. Poset -> Rel ( _I |` B ) ) |
| 9 | opabresid | |- ( _I |` B ) = { <. x , y >. | ( x e. B /\ y = x ) } |
|
| 10 | 9 | eqcomi | |- { <. x , y >. | ( x e. B /\ y = x ) } = ( _I |` B ) |
| 11 | 10 | eleq2i | |- ( <. x , y >. e. { <. x , y >. | ( x e. B /\ y = x ) } <-> <. x , y >. e. ( _I |` B ) ) |
| 12 | opabidw | |- ( <. x , y >. e. { <. x , y >. | ( x e. B /\ y = x ) } <-> ( x e. B /\ y = x ) ) |
|
| 13 | 11 12 | bitr3i | |- ( <. x , y >. e. ( _I |` B ) <-> ( x e. B /\ y = x ) ) |
| 14 | 1 2 | posref | |- ( ( K e. Poset /\ x e. B ) -> x .<_ x ) |
| 15 | df-br | |- ( x .<_ y <-> <. x , y >. e. .<_ ) |
|
| 16 | breq2 | |- ( y = x -> ( x .<_ y <-> x .<_ x ) ) |
|
| 17 | 15 16 | bitr3id | |- ( y = x -> ( <. x , y >. e. .<_ <-> x .<_ x ) ) |
| 18 | 14 17 | syl5ibrcom | |- ( ( K e. Poset /\ x e. B ) -> ( y = x -> <. x , y >. e. .<_ ) ) |
| 19 | 18 | expimpd | |- ( K e. Poset -> ( ( x e. B /\ y = x ) -> <. x , y >. e. .<_ ) ) |
| 20 | 13 19 | biimtrid | |- ( K e. Poset -> ( <. x , y >. e. ( _I |` B ) -> <. x , y >. e. .<_ ) ) |
| 21 | 8 20 | relssdv | |- ( K e. Poset -> ( _I |` B ) C_ .<_ ) |
| 22 | 6 21 | jca | |- ( K e. Poset -> ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) |
| 23 | simpl | |- ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) -> K e. V ) |
|
| 24 | 1 | a1i | |- ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) -> B = ( Base ` K ) ) |
| 25 | 2 | a1i | |- ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) -> .<_ = ( le ` K ) ) |
| 26 | equid | |- x = x |
|
| 27 | simpr | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B ) -> x e. B ) |
|
| 28 | resieq | |- ( ( x e. B /\ x e. B ) -> ( x ( _I |` B ) x <-> x = x ) ) |
|
| 29 | 27 27 28 | syl2anc | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B ) -> ( x ( _I |` B ) x <-> x = x ) ) |
| 30 | 26 29 | mpbiri | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B ) -> x ( _I |` B ) x ) |
| 31 | simplrr | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B ) -> ( _I |` B ) C_ .<_ ) |
|
| 32 | 31 | ssbrd | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B ) -> ( x ( _I |` B ) x -> x .<_ x ) ) |
| 33 | 30 32 | mpd | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B ) -> x .<_ x ) |
| 34 | 1 2 3 | pleval2i | |- ( ( x e. B /\ y e. B ) -> ( x .<_ y -> ( x .< y \/ x = y ) ) ) |
| 35 | 34 | 3adant1 | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B /\ y e. B ) -> ( x .<_ y -> ( x .< y \/ x = y ) ) ) |
| 36 | 1 2 3 | pleval2i | |- ( ( y e. B /\ x e. B ) -> ( y .<_ x -> ( y .< x \/ y = x ) ) ) |
| 37 | 36 | ancoms | |- ( ( x e. B /\ y e. B ) -> ( y .<_ x -> ( y .< x \/ y = x ) ) ) |
| 38 | 37 | 3adant1 | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B /\ y e. B ) -> ( y .<_ x -> ( y .< x \/ y = x ) ) ) |
| 39 | simprl | |- ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) -> .< Po B ) |
|
| 40 | po2nr | |- ( ( .< Po B /\ ( x e. B /\ y e. B ) ) -> -. ( x .< y /\ y .< x ) ) |
|
| 41 | 40 | 3impb | |- ( ( .< Po B /\ x e. B /\ y e. B ) -> -. ( x .< y /\ y .< x ) ) |
| 42 | 39 41 | syl3an1 | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B /\ y e. B ) -> -. ( x .< y /\ y .< x ) ) |
| 43 | 42 | pm2.21d | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B /\ y e. B ) -> ( ( x .< y /\ y .< x ) -> x = y ) ) |
| 44 | simpl | |- ( ( x = y /\ y .< x ) -> x = y ) |
|
| 45 | 44 | a1i | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B /\ y e. B ) -> ( ( x = y /\ y .< x ) -> x = y ) ) |
| 46 | simpr | |- ( ( x .< y /\ y = x ) -> y = x ) |
|
| 47 | 46 | equcomd | |- ( ( x .< y /\ y = x ) -> x = y ) |
| 48 | 47 | a1i | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B /\ y e. B ) -> ( ( x .< y /\ y = x ) -> x = y ) ) |
| 49 | simpl | |- ( ( x = y /\ y = x ) -> x = y ) |
|
| 50 | 49 | a1i | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B /\ y e. B ) -> ( ( x = y /\ y = x ) -> x = y ) ) |
| 51 | 43 45 48 50 | ccased | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B /\ y e. B ) -> ( ( ( x .< y \/ x = y ) /\ ( y .< x \/ y = x ) ) -> x = y ) ) |
| 52 | 35 38 51 | syl2and | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ x e. B /\ y e. B ) -> ( ( x .<_ y /\ y .<_ x ) -> x = y ) ) |
| 53 | simpr1 | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> x e. B ) |
|
| 54 | simpr2 | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> y e. B ) |
|
| 55 | 53 54 34 | syl2anc | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .<_ y -> ( x .< y \/ x = y ) ) ) |
| 56 | simpr3 | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> z e. B ) |
|
| 57 | 1 2 3 | pleval2i | |- ( ( y e. B /\ z e. B ) -> ( y .<_ z -> ( y .< z \/ y = z ) ) ) |
| 58 | 54 56 57 | syl2anc | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( y .<_ z -> ( y .< z \/ y = z ) ) ) |
| 59 | potr | |- ( ( .< Po B /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .< y /\ y .< z ) -> x .< z ) ) |
|
| 60 | 39 59 | sylan | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .< y /\ y .< z ) -> x .< z ) ) |
| 61 | simpll | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> K e. V ) |
|
| 62 | 2 3 | pltle | |- ( ( K e. V /\ x e. B /\ z e. B ) -> ( x .< z -> x .<_ z ) ) |
| 63 | 61 53 56 62 | syl3anc | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( x .< z -> x .<_ z ) ) |
| 64 | 60 63 | syld | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .< y /\ y .< z ) -> x .<_ z ) ) |
| 65 | breq1 | |- ( x = y -> ( x .< z <-> y .< z ) ) |
|
| 66 | 65 | biimpar | |- ( ( x = y /\ y .< z ) -> x .< z ) |
| 67 | 66 63 | syl5 | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x = y /\ y .< z ) -> x .<_ z ) ) |
| 68 | breq2 | |- ( y = z -> ( x .< y <-> x .< z ) ) |
|
| 69 | 68 | biimpac | |- ( ( x .< y /\ y = z ) -> x .< z ) |
| 70 | 69 63 | syl5 | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .< y /\ y = z ) -> x .<_ z ) ) |
| 71 | 53 33 | syldan | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> x .<_ x ) |
| 72 | eqtr | |- ( ( x = y /\ y = z ) -> x = z ) |
|
| 73 | 72 | breq2d | |- ( ( x = y /\ y = z ) -> ( x .<_ x <-> x .<_ z ) ) |
| 74 | 71 73 | syl5ibcom | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x = y /\ y = z ) -> x .<_ z ) ) |
| 75 | 64 67 70 74 | ccased | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( ( x .< y \/ x = y ) /\ ( y .< z \/ y = z ) ) -> x .<_ z ) ) |
| 76 | 55 58 75 | syl2and | |- ( ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .<_ y /\ y .<_ z ) -> x .<_ z ) ) |
| 77 | 23 24 25 33 52 76 | isposd | |- ( ( K e. V /\ ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) -> K e. Poset ) |
| 78 | 77 | ex | |- ( K e. V -> ( ( .< Po B /\ ( _I |` B ) C_ .<_ ) -> K e. Poset ) ) |
| 79 | 22 78 | impbid2 | |- ( K e. V -> ( K e. Poset <-> ( .< Po B /\ ( _I |` B ) C_ .<_ ) ) ) |