This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The less-than relation is transitive. ( psstr analog.) (Contributed by NM, 2-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pltnlt.b | |- B = ( Base ` K ) |
|
| pltnlt.s | |- .< = ( lt ` K ) |
||
| Assertion | plttr | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> X .< Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltnlt.b | |- B = ( Base ` K ) |
|
| 2 | pltnlt.s | |- .< = ( lt ` K ) |
|
| 3 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 4 | 3 2 | pltle | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y -> X ( le ` K ) Y ) ) |
| 5 | 4 | 3adant3r3 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .< Y -> X ( le ` K ) Y ) ) |
| 6 | 3 2 | pltle | |- ( ( K e. Poset /\ Y e. B /\ Z e. B ) -> ( Y .< Z -> Y ( le ` K ) Z ) ) |
| 7 | 6 | 3adant3r1 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .< Z -> Y ( le ` K ) Z ) ) |
| 8 | 1 3 | postr | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ( le ` K ) Y /\ Y ( le ` K ) Z ) -> X ( le ` K ) Z ) ) |
| 9 | 5 7 8 | syl2and | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> X ( le ` K ) Z ) ) |
| 10 | 1 2 | pltn2lp | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> -. ( X .< Y /\ Y .< X ) ) |
| 11 | 10 | 3adant3r3 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> -. ( X .< Y /\ Y .< X ) ) |
| 12 | breq2 | |- ( X = Z -> ( Y .< X <-> Y .< Z ) ) |
|
| 13 | 12 | anbi2d | |- ( X = Z -> ( ( X .< Y /\ Y .< X ) <-> ( X .< Y /\ Y .< Z ) ) ) |
| 14 | 13 | notbid | |- ( X = Z -> ( -. ( X .< Y /\ Y .< X ) <-> -. ( X .< Y /\ Y .< Z ) ) ) |
| 15 | 11 14 | syl5ibcom | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X = Z -> -. ( X .< Y /\ Y .< Z ) ) ) |
| 16 | 15 | necon2ad | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> X =/= Z ) ) |
| 17 | 9 16 | jcad | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> ( X ( le ` K ) Z /\ X =/= Z ) ) ) |
| 18 | 3 2 | pltval | |- ( ( K e. Poset /\ X e. B /\ Z e. B ) -> ( X .< Z <-> ( X ( le ` K ) Z /\ X =/= Z ) ) ) |
| 19 | 18 | 3adant3r2 | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .< Z <-> ( X ( le ` K ) Z /\ X =/= Z ) ) ) |
| 20 | 17 19 | sylibrd | |- ( ( K e. Poset /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> X .< Z ) ) |