This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of pleval2 . (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pleval2.b | |- B = ( Base ` K ) |
|
| pleval2.l | |- .<_ = ( le ` K ) |
||
| pleval2.s | |- .< = ( lt ` K ) |
||
| Assertion | pleval2i | |- ( ( X e. B /\ Y e. B ) -> ( X .<_ Y -> ( X .< Y \/ X = Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pleval2.b | |- B = ( Base ` K ) |
|
| 2 | pleval2.l | |- .<_ = ( le ` K ) |
|
| 3 | pleval2.s | |- .< = ( lt ` K ) |
|
| 4 | elfvdm | |- ( X e. ( Base ` K ) -> K e. dom Base ) |
|
| 5 | 4 1 | eleq2s | |- ( X e. B -> K e. dom Base ) |
| 6 | 5 | adantr | |- ( ( X e. B /\ Y e. B ) -> K e. dom Base ) |
| 7 | 2 3 | pltval | |- ( ( K e. dom Base /\ X e. B /\ Y e. B ) -> ( X .< Y <-> ( X .<_ Y /\ X =/= Y ) ) ) |
| 8 | 7 | 3expb | |- ( ( K e. dom Base /\ ( X e. B /\ Y e. B ) ) -> ( X .< Y <-> ( X .<_ Y /\ X =/= Y ) ) ) |
| 9 | 6 8 | mpancom | |- ( ( X e. B /\ Y e. B ) -> ( X .< Y <-> ( X .<_ Y /\ X =/= Y ) ) ) |
| 10 | 9 | biimpar | |- ( ( ( X e. B /\ Y e. B ) /\ ( X .<_ Y /\ X =/= Y ) ) -> X .< Y ) |
| 11 | 10 | expr | |- ( ( ( X e. B /\ Y e. B ) /\ X .<_ Y ) -> ( X =/= Y -> X .< Y ) ) |
| 12 | 11 | necon1bd | |- ( ( ( X e. B /\ Y e. B ) /\ X .<_ Y ) -> ( -. X .< Y -> X = Y ) ) |
| 13 | 12 | orrd | |- ( ( ( X e. B /\ Y e. B ) /\ X .<_ Y ) -> ( X .< Y \/ X = Y ) ) |
| 14 | 13 | ex | |- ( ( X e. B /\ Y e. B ) -> ( X .<_ Y -> ( X .< Y \/ X = Y ) ) ) |