This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient conditions for a partial order. (Contributed by NM, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ispod.1 | |- ( ( ph /\ x e. A ) -> -. x R x ) |
|
| ispod.2 | |- ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x R y /\ y R z ) -> x R z ) ) |
||
| Assertion | ispod | |- ( ph -> R Po A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ispod.1 | |- ( ( ph /\ x e. A ) -> -. x R x ) |
|
| 2 | ispod.2 | |- ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x R y /\ y R z ) -> x R z ) ) |
|
| 3 | 1 | 3ad2antr1 | |- ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) -> -. x R x ) |
| 4 | 3 2 | jca | |- ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 5 | 4 | ralrimivvva | |- ( ph -> A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
| 6 | df-po | |- ( R Po A <-> A. x e. A A. y e. A A. z e. A ( -. x R x /\ ( ( x R y /\ y R z ) -> x R z ) ) ) |
|
| 7 | 5 6 | sylibr | |- ( ph -> R Po A ) |