This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of ReedSimon p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 . (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | polid.1 | |- A e. ~H |
|
| polid.2 | |- B e. ~H |
||
| Assertion | polidi | |- ( A .ih B ) = ( ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | polid.1 | |- A e. ~H |
|
| 2 | polid.2 | |- B e. ~H |
|
| 3 | 1 2 2 1 | polid2i | |- ( A .ih B ) = ( ( ( ( ( A +h B ) .ih ( A +h B ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) |
| 4 | 1 2 | hvaddcli | |- ( A +h B ) e. ~H |
| 5 | 4 | normsqi | |- ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( A +h B ) .ih ( A +h B ) ) |
| 6 | 1 2 | hvsubcli | |- ( A -h B ) e. ~H |
| 7 | 6 | normsqi | |- ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( A -h B ) .ih ( A -h B ) ) |
| 8 | 5 7 | oveq12i | |- ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) = ( ( ( A +h B ) .ih ( A +h B ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) |
| 9 | ax-icn | |- _i e. CC |
|
| 10 | 9 2 | hvmulcli | |- ( _i .h B ) e. ~H |
| 11 | 1 10 | hvaddcli | |- ( A +h ( _i .h B ) ) e. ~H |
| 12 | 11 | normsqi | |- ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) = ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) |
| 13 | 1 10 | hvsubcli | |- ( A -h ( _i .h B ) ) e. ~H |
| 14 | 13 | normsqi | |- ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) = ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) |
| 15 | 12 14 | oveq12i | |- ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) = ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) |
| 16 | 15 | oveq2i | |- ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) = ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) ) |
| 17 | 8 16 | oveq12i | |- ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( A +h B ) .ih ( A +h B ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) |
| 18 | 17 | oveq1i | |- ( ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) = ( ( ( ( ( A +h B ) .ih ( A +h B ) ) - ( ( A -h B ) .ih ( A -h B ) ) ) + ( _i x. ( ( ( A +h ( _i .h B ) ) .ih ( A +h ( _i .h B ) ) ) - ( ( A -h ( _i .h B ) ) .ih ( A -h ( _i .h B ) ) ) ) ) ) / 4 ) |
| 19 | 3 18 | eqtr4i | |- ( A .ih B ) = ( ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) |