This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem8.1 | |- A e. ~H |
|
| normlem8.2 | |- B e. ~H |
||
| normlem8.3 | |- C e. ~H |
||
| normlem8.4 | |- D e. ~H |
||
| Assertion | normlem9 | |- ( ( A -h B ) .ih ( C -h D ) ) = ( ( ( A .ih C ) + ( B .ih D ) ) - ( ( A .ih D ) + ( B .ih C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem8.1 | |- A e. ~H |
|
| 2 | normlem8.2 | |- B e. ~H |
|
| 3 | normlem8.3 | |- C e. ~H |
|
| 4 | normlem8.4 | |- D e. ~H |
|
| 5 | 1 2 | hvsubvali | |- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
| 6 | 3 4 | hvsubvali | |- ( C -h D ) = ( C +h ( -u 1 .h D ) ) |
| 7 | 5 6 | oveq12i | |- ( ( A -h B ) .ih ( C -h D ) ) = ( ( A +h ( -u 1 .h B ) ) .ih ( C +h ( -u 1 .h D ) ) ) |
| 8 | neg1cn | |- -u 1 e. CC |
|
| 9 | 8 2 | hvmulcli | |- ( -u 1 .h B ) e. ~H |
| 10 | 8 4 | hvmulcli | |- ( -u 1 .h D ) e. ~H |
| 11 | 1 9 3 10 | normlem8 | |- ( ( A +h ( -u 1 .h B ) ) .ih ( C +h ( -u 1 .h D ) ) ) = ( ( ( A .ih C ) + ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) ) + ( ( A .ih ( -u 1 .h D ) ) + ( ( -u 1 .h B ) .ih C ) ) ) |
| 12 | ax-his3 | |- ( ( -u 1 e. CC /\ B e. ~H /\ ( -u 1 .h D ) e. ~H ) -> ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) = ( -u 1 x. ( B .ih ( -u 1 .h D ) ) ) ) |
|
| 13 | 8 2 10 12 | mp3an | |- ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) = ( -u 1 x. ( B .ih ( -u 1 .h D ) ) ) |
| 14 | his5 | |- ( ( -u 1 e. CC /\ B e. ~H /\ D e. ~H ) -> ( B .ih ( -u 1 .h D ) ) = ( ( * ` -u 1 ) x. ( B .ih D ) ) ) |
|
| 15 | 8 2 4 14 | mp3an | |- ( B .ih ( -u 1 .h D ) ) = ( ( * ` -u 1 ) x. ( B .ih D ) ) |
| 16 | 15 | oveq2i | |- ( -u 1 x. ( B .ih ( -u 1 .h D ) ) ) = ( -u 1 x. ( ( * ` -u 1 ) x. ( B .ih D ) ) ) |
| 17 | neg1rr | |- -u 1 e. RR |
|
| 18 | cjre | |- ( -u 1 e. RR -> ( * ` -u 1 ) = -u 1 ) |
|
| 19 | 17 18 | ax-mp | |- ( * ` -u 1 ) = -u 1 |
| 20 | 19 | oveq2i | |- ( -u 1 x. ( * ` -u 1 ) ) = ( -u 1 x. -u 1 ) |
| 21 | ax-1cn | |- 1 e. CC |
|
| 22 | 21 21 | mul2negi | |- ( -u 1 x. -u 1 ) = ( 1 x. 1 ) |
| 23 | 21 | mullidi | |- ( 1 x. 1 ) = 1 |
| 24 | 20 22 23 | 3eqtri | |- ( -u 1 x. ( * ` -u 1 ) ) = 1 |
| 25 | 24 | oveq1i | |- ( ( -u 1 x. ( * ` -u 1 ) ) x. ( B .ih D ) ) = ( 1 x. ( B .ih D ) ) |
| 26 | 8 | cjcli | |- ( * ` -u 1 ) e. CC |
| 27 | 2 4 | hicli | |- ( B .ih D ) e. CC |
| 28 | 8 26 27 | mulassi | |- ( ( -u 1 x. ( * ` -u 1 ) ) x. ( B .ih D ) ) = ( -u 1 x. ( ( * ` -u 1 ) x. ( B .ih D ) ) ) |
| 29 | 27 | mullidi | |- ( 1 x. ( B .ih D ) ) = ( B .ih D ) |
| 30 | 25 28 29 | 3eqtr3i | |- ( -u 1 x. ( ( * ` -u 1 ) x. ( B .ih D ) ) ) = ( B .ih D ) |
| 31 | 13 16 30 | 3eqtri | |- ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) = ( B .ih D ) |
| 32 | 31 | oveq2i | |- ( ( A .ih C ) + ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) ) = ( ( A .ih C ) + ( B .ih D ) ) |
| 33 | his5 | |- ( ( -u 1 e. CC /\ A e. ~H /\ D e. ~H ) -> ( A .ih ( -u 1 .h D ) ) = ( ( * ` -u 1 ) x. ( A .ih D ) ) ) |
|
| 34 | 8 1 4 33 | mp3an | |- ( A .ih ( -u 1 .h D ) ) = ( ( * ` -u 1 ) x. ( A .ih D ) ) |
| 35 | 19 | oveq1i | |- ( ( * ` -u 1 ) x. ( A .ih D ) ) = ( -u 1 x. ( A .ih D ) ) |
| 36 | 1 4 | hicli | |- ( A .ih D ) e. CC |
| 37 | 36 | mulm1i | |- ( -u 1 x. ( A .ih D ) ) = -u ( A .ih D ) |
| 38 | 34 35 37 | 3eqtri | |- ( A .ih ( -u 1 .h D ) ) = -u ( A .ih D ) |
| 39 | ax-his3 | |- ( ( -u 1 e. CC /\ B e. ~H /\ C e. ~H ) -> ( ( -u 1 .h B ) .ih C ) = ( -u 1 x. ( B .ih C ) ) ) |
|
| 40 | 8 2 3 39 | mp3an | |- ( ( -u 1 .h B ) .ih C ) = ( -u 1 x. ( B .ih C ) ) |
| 41 | 2 3 | hicli | |- ( B .ih C ) e. CC |
| 42 | 41 | mulm1i | |- ( -u 1 x. ( B .ih C ) ) = -u ( B .ih C ) |
| 43 | 40 42 | eqtri | |- ( ( -u 1 .h B ) .ih C ) = -u ( B .ih C ) |
| 44 | 38 43 | oveq12i | |- ( ( A .ih ( -u 1 .h D ) ) + ( ( -u 1 .h B ) .ih C ) ) = ( -u ( A .ih D ) + -u ( B .ih C ) ) |
| 45 | 36 41 | negdii | |- -u ( ( A .ih D ) + ( B .ih C ) ) = ( -u ( A .ih D ) + -u ( B .ih C ) ) |
| 46 | 44 45 | eqtr4i | |- ( ( A .ih ( -u 1 .h D ) ) + ( ( -u 1 .h B ) .ih C ) ) = -u ( ( A .ih D ) + ( B .ih C ) ) |
| 47 | 32 46 | oveq12i | |- ( ( ( A .ih C ) + ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) ) + ( ( A .ih ( -u 1 .h D ) ) + ( ( -u 1 .h B ) .ih C ) ) ) = ( ( ( A .ih C ) + ( B .ih D ) ) + -u ( ( A .ih D ) + ( B .ih C ) ) ) |
| 48 | 1 3 | hicli | |- ( A .ih C ) e. CC |
| 49 | 48 27 | addcli | |- ( ( A .ih C ) + ( B .ih D ) ) e. CC |
| 50 | 36 41 | addcli | |- ( ( A .ih D ) + ( B .ih C ) ) e. CC |
| 51 | 49 50 | negsubi | |- ( ( ( A .ih C ) + ( B .ih D ) ) + -u ( ( A .ih D ) + ( B .ih C ) ) ) = ( ( ( A .ih C ) + ( B .ih D ) ) - ( ( A .ih D ) + ( B .ih C ) ) ) |
| 52 | 47 51 | eqtri | |- ( ( ( A .ih C ) + ( ( -u 1 .h B ) .ih ( -u 1 .h D ) ) ) + ( ( A .ih ( -u 1 .h D ) ) + ( ( -u 1 .h B ) .ih C ) ) ) = ( ( ( A .ih C ) + ( B .ih D ) ) - ( ( A .ih D ) + ( B .ih C ) ) ) |
| 53 | 7 11 52 | 3eqtri | |- ( ( A -h B ) .ih ( C -h D ) ) = ( ( ( A .ih C ) + ( B .ih D ) ) - ( ( A .ih D ) + ( B .ih C ) ) ) |