This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for pmtrdifwrdel . (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
||
| pmtrdifwrdel.0 | |- U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) ) |
||
| Assertion | pmtrdifwrdellem3 | |- ( W e. Word T -> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 2 | pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
|
| 3 | pmtrdifwrdel.0 | |- U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) ) |
|
| 4 | wrdsymbcl | |- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) e. T ) |
|
| 5 | eqid | |- ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) |
|
| 6 | 1 2 5 | pmtrdifellem3 | |- ( ( W ` i ) e. T -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) |
| 7 | 4 6 | syl | |- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) |
| 8 | fveq2 | |- ( x = i -> ( W ` x ) = ( W ` i ) ) |
|
| 9 | 8 | difeq1d | |- ( x = i -> ( ( W ` x ) \ _I ) = ( ( W ` i ) \ _I ) ) |
| 10 | 9 | dmeqd | |- ( x = i -> dom ( ( W ` x ) \ _I ) = dom ( ( W ` i ) \ _I ) ) |
| 11 | 10 | fveq2d | |- ( x = i -> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ) |
| 12 | simpr | |- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) |
|
| 13 | fvexd | |- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) e. _V ) |
|
| 14 | 3 11 12 13 | fvmptd3 | |- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( U ` i ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ) |
| 15 | 14 | fveq1d | |- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( U ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) |
| 16 | 15 | eqeq2d | |- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) <-> ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) ) |
| 17 | 16 | ralbidv | |- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) <-> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) ) |
| 18 | 7 17 | mpbird | |- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) |
| 19 | 18 | ralrimiva | |- ( W e. Word T -> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) |