This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for pmtrdifwrdel2 . (Contributed by AV, 31-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
||
| pmtrdifwrdel.0 | |- U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) ) |
||
| Assertion | pmtrdifwrdel2lem1 | |- ( ( W e. Word T /\ K e. N ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( U ` i ) ` K ) = K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 2 | pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
|
| 3 | pmtrdifwrdel.0 | |- U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) ) |
|
| 4 | simpr | |- ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) |
|
| 5 | fvex | |- ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) e. _V |
|
| 6 | fveq2 | |- ( x = i -> ( W ` x ) = ( W ` i ) ) |
|
| 7 | 6 | difeq1d | |- ( x = i -> ( ( W ` x ) \ _I ) = ( ( W ` i ) \ _I ) ) |
| 8 | 7 | dmeqd | |- ( x = i -> dom ( ( W ` x ) \ _I ) = dom ( ( W ` i ) \ _I ) ) |
| 9 | 8 | fveq2d | |- ( x = i -> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ) |
| 10 | 9 3 | fvmptg | |- ( ( i e. ( 0 ..^ ( # ` W ) ) /\ ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) e. _V ) -> ( U ` i ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ) |
| 11 | 4 5 10 | sylancl | |- ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( U ` i ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ) |
| 12 | 11 | fveq1d | |- ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( U ` i ) ` K ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` K ) ) |
| 13 | wrdsymbcl | |- ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) e. T ) |
|
| 14 | 13 | adantlr | |- ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) e. T ) |
| 15 | simplr | |- ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> K e. N ) |
|
| 16 | eqid | |- ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) |
|
| 17 | 1 2 16 | pmtrdifellem4 | |- ( ( ( W ` i ) e. T /\ K e. N ) -> ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` K ) = K ) |
| 18 | 14 15 17 | syl2anc | |- ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` K ) = K ) |
| 19 | 12 18 | eqtrd | |- ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( U ` i ) ` K ) = K ) |
| 20 | 19 | ralrimiva | |- ( ( W e. Word T /\ K e. N ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( U ` i ) ` K ) = K ) |