This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for pmtrdifwrdel . (Contributed by AV, 15-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
||
| pmtrdifwrdel.0 | |- U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) ) |
||
| Assertion | pmtrdifwrdellem2 | |- ( W e. Word T -> ( # ` W ) = ( # ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtrdifel.t | |- T = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 2 | pmtrdifel.r | |- R = ran ( pmTrsp ` N ) |
|
| 3 | pmtrdifwrdel.0 | |- U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) ) |
|
| 4 | wrdsymbcl | |- ( ( W e. Word T /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` x ) e. T ) |
|
| 5 | eqid | |- ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) |
|
| 6 | 1 2 5 | pmtrdifellem1 | |- ( ( W ` x ) e. T -> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) e. R ) |
| 7 | 4 6 | syl | |- ( ( W e. Word T /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) e. R ) |
| 8 | 7 | ralrimiva | |- ( W e. Word T -> A. x e. ( 0 ..^ ( # ` W ) ) ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) e. R ) |
| 9 | 3 | fnmpt | |- ( A. x e. ( 0 ..^ ( # ` W ) ) ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) e. R -> U Fn ( 0 ..^ ( # ` W ) ) ) |
| 10 | hashfn | |- ( U Fn ( 0 ..^ ( # ` W ) ) -> ( # ` U ) = ( # ` ( 0 ..^ ( # ` W ) ) ) ) |
|
| 11 | 8 9 10 | 3syl | |- ( W e. Word T -> ( # ` U ) = ( # ` ( 0 ..^ ( # ` W ) ) ) ) |
| 12 | lencl | |- ( W e. Word T -> ( # ` W ) e. NN0 ) |
|
| 13 | hashfzo0 | |- ( ( # ` W ) e. NN0 -> ( # ` ( 0 ..^ ( # ` W ) ) ) = ( # ` W ) ) |
|
| 14 | 12 13 | syl | |- ( W e. Word T -> ( # ` ( 0 ..^ ( # ` W ) ) ) = ( # ` W ) ) |
| 15 | 11 14 | eqtr2d | |- ( W e. Word T -> ( # ` W ) = ( # ` U ) ) |