This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pmod1i . (Contributed by NM, 9-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmodlem.l | |- .<_ = ( le ` K ) |
|
| pmodlem.j | |- .\/ = ( join ` K ) |
||
| pmodlem.a | |- A = ( Atoms ` K ) |
||
| pmodlem.s | |- S = ( PSubSp ` K ) |
||
| pmodlem.p | |- .+ = ( +P ` K ) |
||
| Assertion | pmodlem2 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmodlem.l | |- .<_ = ( le ` K ) |
|
| 2 | pmodlem.j | |- .\/ = ( join ` K ) |
|
| 3 | pmodlem.a | |- A = ( Atoms ` K ) |
|
| 4 | pmodlem.s | |- S = ( PSubSp ` K ) |
|
| 5 | pmodlem.p | |- .+ = ( +P ` K ) |
|
| 6 | simpr | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> X = (/) ) |
|
| 7 | 6 | oveq1d | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( X .+ Y ) = ( (/) .+ Y ) ) |
| 8 | simpl1 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> K e. HL ) |
|
| 9 | simpl22 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> Y C_ A ) |
|
| 10 | 3 5 | padd02 | |- ( ( K e. HL /\ Y C_ A ) -> ( (/) .+ Y ) = Y ) |
| 11 | 8 9 10 | syl2anc | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( (/) .+ Y ) = Y ) |
| 12 | 7 11 | eqtrd | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( X .+ Y ) = Y ) |
| 13 | 12 | ineq1d | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( ( X .+ Y ) i^i Z ) = ( Y i^i Z ) ) |
| 14 | ssinss1 | |- ( Y C_ A -> ( Y i^i Z ) C_ A ) |
|
| 15 | 9 14 | syl | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( Y i^i Z ) C_ A ) |
| 16 | simpl21 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> X C_ A ) |
|
| 17 | 3 5 | sspadd2 | |- ( ( K e. HL /\ ( Y i^i Z ) C_ A /\ X C_ A ) -> ( Y i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 18 | 8 15 16 17 | syl3anc | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( Y i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 19 | 13 18 | eqsstrd | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ X = (/) ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 20 | oveq2 | |- ( Y = (/) -> ( X .+ Y ) = ( X .+ (/) ) ) |
|
| 21 | simp1 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> K e. HL ) |
|
| 22 | simp21 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> X C_ A ) |
|
| 23 | 3 5 | padd01 | |- ( ( K e. HL /\ X C_ A ) -> ( X .+ (/) ) = X ) |
| 24 | 21 22 23 | syl2anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( X .+ (/) ) = X ) |
| 25 | 20 24 | sylan9eqr | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( X .+ Y ) = X ) |
| 26 | 25 | ineq1d | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( ( X .+ Y ) i^i Z ) = ( X i^i Z ) ) |
| 27 | inss1 | |- ( X i^i Z ) C_ X |
|
| 28 | simpl1 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> K e. HL ) |
|
| 29 | simpl21 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> X C_ A ) |
|
| 30 | simpl22 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> Y C_ A ) |
|
| 31 | 30 14 | syl | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( Y i^i Z ) C_ A ) |
| 32 | 3 5 | sspadd1 | |- ( ( K e. HL /\ X C_ A /\ ( Y i^i Z ) C_ A ) -> X C_ ( X .+ ( Y i^i Z ) ) ) |
| 33 | 28 29 31 32 | syl3anc | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> X C_ ( X .+ ( Y i^i Z ) ) ) |
| 34 | 27 33 | sstrid | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( X i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 35 | 26 34 | eqsstrd | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ Y = (/) ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 36 | elin | |- ( p e. ( ( X .+ Y ) i^i Z ) <-> ( p e. ( X .+ Y ) /\ p e. Z ) ) |
|
| 37 | simpl1 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> K e. HL ) |
|
| 38 | 37 | hllatd | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> K e. Lat ) |
| 39 | simpl21 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> X C_ A ) |
|
| 40 | simpl22 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> Y C_ A ) |
|
| 41 | simprl | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> ( X =/= (/) /\ Y =/= (/) ) ) |
|
| 42 | 1 2 3 5 | elpaddn0 | |- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( p e. ( X .+ Y ) <-> ( p e. A /\ E. q e. X E. r e. Y p .<_ ( q .\/ r ) ) ) ) |
| 43 | 38 39 40 41 42 | syl31anc | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> ( p e. ( X .+ Y ) <-> ( p e. A /\ E. q e. X E. r e. Y p .<_ ( q .\/ r ) ) ) ) |
| 44 | simpl1 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> K e. HL ) |
|
| 45 | simpl21 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> X C_ A ) |
|
| 46 | simpl22 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> Y C_ A ) |
|
| 47 | simpl23 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> Z e. S ) |
|
| 48 | simpl3 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> X C_ Z ) |
|
| 49 | simpr1 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> p e. Z ) |
|
| 50 | simpr2l | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> q e. X ) |
|
| 51 | simpr2r | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> r e. Y ) |
|
| 52 | simpr3 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> p .<_ ( q .\/ r ) ) |
|
| 53 | 1 2 3 4 5 | pmodlem1 | |- ( ( ( K e. HL /\ X C_ A /\ Y C_ A ) /\ ( Z e. S /\ X C_ Z /\ p e. Z ) /\ ( q e. X /\ r e. Y /\ p .<_ ( q .\/ r ) ) ) -> p e. ( X .+ ( Y i^i Z ) ) ) |
| 54 | 44 45 46 47 48 49 50 51 52 53 | syl333anc | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( p e. Z /\ ( q e. X /\ r e. Y ) /\ p .<_ ( q .\/ r ) ) ) -> p e. ( X .+ ( Y i^i Z ) ) ) |
| 55 | 54 | 3exp2 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( p e. Z -> ( ( q e. X /\ r e. Y ) -> ( p .<_ ( q .\/ r ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) ) ) |
| 56 | 55 | imp | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ p e. Z ) -> ( ( q e. X /\ r e. Y ) -> ( p .<_ ( q .\/ r ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) ) |
| 57 | 56 | rexlimdvv | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ p e. Z ) -> ( E. q e. X E. r e. Y p .<_ ( q .\/ r ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
| 58 | 57 | adantld | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ p e. Z ) -> ( ( p e. A /\ E. q e. X E. r e. Y p .<_ ( q .\/ r ) ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
| 59 | 58 | adantrl | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> ( ( p e. A /\ E. q e. X E. r e. Y p .<_ ( q .\/ r ) ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
| 60 | 43 59 | sylbid | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( ( X =/= (/) /\ Y =/= (/) ) /\ p e. Z ) ) -> ( p e. ( X .+ Y ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
| 61 | 60 | exp32 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( ( X =/= (/) /\ Y =/= (/) ) -> ( p e. Z -> ( p e. ( X .+ Y ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) ) ) |
| 62 | 61 | com34 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( ( X =/= (/) /\ Y =/= (/) ) -> ( p e. ( X .+ Y ) -> ( p e. Z -> p e. ( X .+ ( Y i^i Z ) ) ) ) ) ) |
| 63 | 62 | imp4b | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( p e. ( X .+ Y ) /\ p e. Z ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
| 64 | 36 63 | biimtrid | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( p e. ( ( X .+ Y ) i^i Z ) -> p e. ( X .+ ( Y i^i Z ) ) ) ) |
| 65 | 64 | ssrdv | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 66 | 19 35 65 | pm2.61da2ne | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |