This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A projective subspace sum is a superset of its second summand. ( ssun2 analog.) (Contributed by NM, 3-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | padd0.a | |- A = ( Atoms ` K ) |
|
| padd0.p | |- .+ = ( +P ` K ) |
||
| Assertion | sspadd2 | |- ( ( K e. B /\ X C_ A /\ Y C_ A ) -> X C_ ( Y .+ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | |- A = ( Atoms ` K ) |
|
| 2 | padd0.p | |- .+ = ( +P ` K ) |
|
| 3 | ssun2 | |- X C_ ( Y u. X ) |
|
| 4 | ssun1 | |- ( Y u. X ) C_ ( ( Y u. X ) u. { p e. A | E. q e. Y E. r e. X p ( le ` K ) ( q ( join ` K ) r ) } ) |
|
| 5 | 3 4 | sstri | |- X C_ ( ( Y u. X ) u. { p e. A | E. q e. Y E. r e. X p ( le ` K ) ( q ( join ` K ) r ) } ) |
| 6 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 7 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 8 | 6 7 1 2 | paddval | |- ( ( K e. B /\ Y C_ A /\ X C_ A ) -> ( Y .+ X ) = ( ( Y u. X ) u. { p e. A | E. q e. Y E. r e. X p ( le ` K ) ( q ( join ` K ) r ) } ) ) |
| 9 | 8 | 3com23 | |- ( ( K e. B /\ X C_ A /\ Y C_ A ) -> ( Y .+ X ) = ( ( Y u. X ) u. { p e. A | E. q e. Y E. r e. X p ( le ` K ) ( q ( join ` K ) r ) } ) ) |
| 10 | 5 9 | sseqtrrid | |- ( ( K e. B /\ X C_ A /\ Y C_ A ) -> X C_ ( Y .+ X ) ) |