This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmod.a | |- A = ( Atoms ` K ) |
|
| pmod.s | |- S = ( PSubSp ` K ) |
||
| pmod.p | |- .+ = ( +P ` K ) |
||
| Assertion | pmod1i | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( X C_ Z -> ( ( X .+ Y ) i^i Z ) = ( X .+ ( Y i^i Z ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmod.a | |- A = ( Atoms ` K ) |
|
| 2 | pmod.s | |- S = ( PSubSp ` K ) |
|
| 3 | pmod.p | |- .+ = ( +P ` K ) |
|
| 4 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 5 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 6 | 4 5 1 2 3 | pmodlem2 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) /\ X C_ Z ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 7 | 6 | 3expa | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( ( X .+ Y ) i^i Z ) C_ ( X .+ ( Y i^i Z ) ) ) |
| 8 | inss1 | |- ( Y i^i Z ) C_ Y |
|
| 9 | simpll | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> K e. HL ) |
|
| 10 | simplr2 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> Y C_ A ) |
|
| 11 | simplr1 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> X C_ A ) |
|
| 12 | 1 3 | paddss2 | |- ( ( K e. HL /\ Y C_ A /\ X C_ A ) -> ( ( Y i^i Z ) C_ Y -> ( X .+ ( Y i^i Z ) ) C_ ( X .+ Y ) ) ) |
| 13 | 9 10 11 12 | syl3anc | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( ( Y i^i Z ) C_ Y -> ( X .+ ( Y i^i Z ) ) C_ ( X .+ Y ) ) ) |
| 14 | 8 13 | mpi | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( X .+ ( Y i^i Z ) ) C_ ( X .+ Y ) ) |
| 15 | simpl | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> K e. HL ) |
|
| 16 | 1 2 | psubssat | |- ( ( K e. HL /\ Z e. S ) -> Z C_ A ) |
| 17 | 16 | 3ad2antr3 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> Z C_ A ) |
| 18 | simpr2 | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> Y C_ A ) |
|
| 19 | ssinss1 | |- ( Y C_ A -> ( Y i^i Z ) C_ A ) |
|
| 20 | 18 19 | syl | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( Y i^i Z ) C_ A ) |
| 21 | 1 3 | paddss1 | |- ( ( K e. HL /\ Z C_ A /\ ( Y i^i Z ) C_ A ) -> ( X C_ Z -> ( X .+ ( Y i^i Z ) ) C_ ( Z .+ ( Y i^i Z ) ) ) ) |
| 22 | 15 17 20 21 | syl3anc | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( X C_ Z -> ( X .+ ( Y i^i Z ) ) C_ ( Z .+ ( Y i^i Z ) ) ) ) |
| 23 | 22 | imp | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( X .+ ( Y i^i Z ) ) C_ ( Z .+ ( Y i^i Z ) ) ) |
| 24 | simplr3 | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> Z e. S ) |
|
| 25 | 9 24 16 | syl2anc | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> Z C_ A ) |
| 26 | inss2 | |- ( Y i^i Z ) C_ Z |
|
| 27 | 1 3 | paddss2 | |- ( ( K e. HL /\ Z C_ A /\ Z C_ A ) -> ( ( Y i^i Z ) C_ Z -> ( Z .+ ( Y i^i Z ) ) C_ ( Z .+ Z ) ) ) |
| 28 | 26 27 | mpi | |- ( ( K e. HL /\ Z C_ A /\ Z C_ A ) -> ( Z .+ ( Y i^i Z ) ) C_ ( Z .+ Z ) ) |
| 29 | 9 25 25 28 | syl3anc | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( Z .+ ( Y i^i Z ) ) C_ ( Z .+ Z ) ) |
| 30 | 2 3 | paddidm | |- ( ( K e. HL /\ Z e. S ) -> ( Z .+ Z ) = Z ) |
| 31 | 9 24 30 | syl2anc | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( Z .+ Z ) = Z ) |
| 32 | 29 31 | sseqtrd | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( Z .+ ( Y i^i Z ) ) C_ Z ) |
| 33 | 23 32 | sstrd | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( X .+ ( Y i^i Z ) ) C_ Z ) |
| 34 | 14 33 | ssind | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( X .+ ( Y i^i Z ) ) C_ ( ( X .+ Y ) i^i Z ) ) |
| 35 | 7 34 | eqssd | |- ( ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) /\ X C_ Z ) -> ( ( X .+ Y ) i^i Z ) = ( X .+ ( Y i^i Z ) ) ) |
| 36 | 35 | ex | |- ( ( K e. HL /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( X C_ Z -> ( ( X .+ Y ) i^i Z ) = ( X .+ ( Y i^i Z ) ) ) ) |