This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of the GLB of a set of lattice elements S . Variant of Theorem 15.5.2 of MaedaMaeda p. 62. (Contributed by NM, 5-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapglb.b | |- B = ( Base ` K ) |
|
| pmapglb.g | |- G = ( glb ` K ) |
||
| pmapglb.m | |- M = ( pmap ` K ) |
||
| Assertion | pmapglb | |- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> ( M ` ( G ` S ) ) = |^|_ x e. S ( M ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapglb.b | |- B = ( Base ` K ) |
|
| 2 | pmapglb.g | |- G = ( glb ` K ) |
|
| 3 | pmapglb.m | |- M = ( pmap ` K ) |
|
| 4 | df-rex | |- ( E. x e. S y = x <-> E. x ( x e. S /\ y = x ) ) |
|
| 5 | equcom | |- ( y = x <-> x = y ) |
|
| 6 | 5 | anbi1ci | |- ( ( x e. S /\ y = x ) <-> ( x = y /\ x e. S ) ) |
| 7 | 6 | exbii | |- ( E. x ( x e. S /\ y = x ) <-> E. x ( x = y /\ x e. S ) ) |
| 8 | eleq1w | |- ( x = y -> ( x e. S <-> y e. S ) ) |
|
| 9 | 8 | equsexvw | |- ( E. x ( x = y /\ x e. S ) <-> y e. S ) |
| 10 | 4 7 9 | 3bitri | |- ( E. x e. S y = x <-> y e. S ) |
| 11 | 10 | abbii | |- { y | E. x e. S y = x } = { y | y e. S } |
| 12 | abid2 | |- { y | y e. S } = S |
|
| 13 | 11 12 | eqtr2i | |- S = { y | E. x e. S y = x } |
| 14 | 13 | fveq2i | |- ( G ` S ) = ( G ` { y | E. x e. S y = x } ) |
| 15 | 14 | fveq2i | |- ( M ` ( G ` S ) ) = ( M ` ( G ` { y | E. x e. S y = x } ) ) |
| 16 | dfss3 | |- ( S C_ B <-> A. x e. S x e. B ) |
|
| 17 | 1 2 3 | pmapglbx | |- ( ( K e. HL /\ A. x e. S x e. B /\ S =/= (/) ) -> ( M ` ( G ` { y | E. x e. S y = x } ) ) = |^|_ x e. S ( M ` x ) ) |
| 18 | 16 17 | syl3an2b | |- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> ( M ` ( G ` { y | E. x e. S y = x } ) ) = |^|_ x e. S ( M ` x ) ) |
| 19 | 15 18 | eqtrid | |- ( ( K e. HL /\ S C_ B /\ S =/= (/) ) -> ( M ` ( G ` S ) ) = |^|_ x e. S ( M ` x ) ) |