This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ply1scl1 as of 12-Mar-2025. (Contributed by Stefan O'Rear, 1-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| ply1scl.a | |- A = ( algSc ` P ) |
||
| ply1scl1.o | |- .1. = ( 1r ` R ) |
||
| ply1scl1.n | |- N = ( 1r ` P ) |
||
| Assertion | ply1scl1OLD | |- ( R e. Ring -> ( A ` .1. ) = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl.p | |- P = ( Poly1 ` R ) |
|
| 2 | ply1scl.a | |- A = ( algSc ` P ) |
|
| 3 | ply1scl1.o | |- .1. = ( 1r ` R ) |
|
| 4 | ply1scl1.n | |- N = ( 1r ` P ) |
|
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 5 3 | ringidcl | |- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 7 | 1 | ply1sca2 | |- ( _I ` R ) = ( Scalar ` P ) |
| 8 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 9 | 8 5 | strfvi | |- ( Base ` R ) = ( Base ` ( _I ` R ) ) |
| 10 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 11 | 2 7 9 10 4 | asclval | |- ( .1. e. ( Base ` R ) -> ( A ` .1. ) = ( .1. ( .s ` P ) N ) ) |
| 12 | 6 11 | syl | |- ( R e. Ring -> ( A ` .1. ) = ( .1. ( .s ` P ) N ) ) |
| 13 | fvi | |- ( R e. Ring -> ( _I ` R ) = R ) |
|
| 14 | 13 | fveq2d | |- ( R e. Ring -> ( 1r ` ( _I ` R ) ) = ( 1r ` R ) ) |
| 15 | 14 3 | eqtr4di | |- ( R e. Ring -> ( 1r ` ( _I ` R ) ) = .1. ) |
| 16 | 15 | oveq1d | |- ( R e. Ring -> ( ( 1r ` ( _I ` R ) ) ( .s ` P ) N ) = ( .1. ( .s ` P ) N ) ) |
| 17 | 1 | ply1lmod | |- ( R e. Ring -> P e. LMod ) |
| 18 | 1 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| 19 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 20 | 19 4 | ringidcl | |- ( P e. Ring -> N e. ( Base ` P ) ) |
| 21 | 18 20 | syl | |- ( R e. Ring -> N e. ( Base ` P ) ) |
| 22 | eqid | |- ( 1r ` ( _I ` R ) ) = ( 1r ` ( _I ` R ) ) |
|
| 23 | 19 7 10 22 | lmodvs1 | |- ( ( P e. LMod /\ N e. ( Base ` P ) ) -> ( ( 1r ` ( _I ` R ) ) ( .s ` P ) N ) = N ) |
| 24 | 17 21 23 | syl2anc | |- ( R e. Ring -> ( ( 1r ` ( _I ` R ) ) ( .s ` P ) N ) = N ) |
| 25 | 12 16 24 | 3eqtr2d | |- ( R e. Ring -> ( A ` .1. ) = N ) |