This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coefficient vector of the unit polynomial. (Contributed by AV, 9-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1id.p | |- P = ( Poly1 ` R ) |
|
| coe1id.i | |- I = ( 1r ` P ) |
||
| coe1id.0 | |- .0. = ( 0g ` R ) |
||
| coe1id.1 | |- .1. = ( 1r ` R ) |
||
| Assertion | coe1id | |- ( R e. Ring -> ( coe1 ` I ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1id.p | |- P = ( Poly1 ` R ) |
|
| 2 | coe1id.i | |- I = ( 1r ` P ) |
|
| 3 | coe1id.0 | |- .0. = ( 0g ` R ) |
|
| 4 | coe1id.1 | |- .1. = ( 1r ` R ) |
|
| 5 | eqid | |- ( algSc ` P ) = ( algSc ` P ) |
|
| 6 | 1 5 4 2 | ply1scl1 | |- ( R e. Ring -> ( ( algSc ` P ) ` .1. ) = I ) |
| 7 | 6 | eqcomd | |- ( R e. Ring -> I = ( ( algSc ` P ) ` .1. ) ) |
| 8 | 7 | fveq2d | |- ( R e. Ring -> ( coe1 ` I ) = ( coe1 ` ( ( algSc ` P ) ` .1. ) ) ) |
| 9 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 10 | 9 4 | ringidcl | |- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 11 | 1 5 9 3 | coe1scl | |- ( ( R e. Ring /\ .1. e. ( Base ` R ) ) -> ( coe1 ` ( ( algSc ` P ) ` .1. ) ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) |
| 12 | 10 11 | mpdan | |- ( R e. Ring -> ( coe1 ` ( ( algSc ` P ) ` .1. ) ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) |
| 13 | 8 12 | eqtrd | |- ( R e. Ring -> ( coe1 ` I ) = ( x e. NN0 |-> if ( x = 0 , .1. , .0. ) ) ) |