This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcqdiv | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A / B ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A e. QQ ) |
|
| 2 | qcn | |- ( A e. QQ -> A e. CC ) |
|
| 3 | 1 2 | syl | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A e. CC ) |
| 4 | simp3l | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B e. QQ ) |
|
| 5 | qcn | |- ( B e. QQ -> B e. CC ) |
|
| 6 | 4 5 | syl | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B e. CC ) |
| 7 | simp3r | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B =/= 0 ) |
|
| 8 | 3 6 7 | divcan1d | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( A / B ) x. B ) = A ) |
| 9 | 8 | oveq2d | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( ( A / B ) x. B ) ) = ( P pCnt A ) ) |
| 10 | simp1 | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> P e. Prime ) |
|
| 11 | qdivcl | |- ( ( A e. QQ /\ B e. QQ /\ B =/= 0 ) -> ( A / B ) e. QQ ) |
|
| 12 | 1 4 7 11 | syl3anc | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A / B ) e. QQ ) |
| 13 | simp2r | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A =/= 0 ) |
|
| 14 | 3 6 13 7 | divne0d | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A / B ) =/= 0 ) |
| 15 | pcqmul | |- ( ( P e. Prime /\ ( ( A / B ) e. QQ /\ ( A / B ) =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( ( A / B ) x. B ) ) = ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) ) |
|
| 16 | 10 12 14 4 7 15 | syl122anc | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( ( A / B ) x. B ) ) = ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) ) |
| 17 | 9 16 | eqtr3d | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt A ) = ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) ) |
| 18 | 17 | oveq1d | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( P pCnt A ) - ( P pCnt B ) ) = ( ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) - ( P pCnt B ) ) ) |
| 19 | pcqcl | |- ( ( P e. Prime /\ ( ( A / B ) e. QQ /\ ( A / B ) =/= 0 ) ) -> ( P pCnt ( A / B ) ) e. ZZ ) |
|
| 20 | 10 12 14 19 | syl12anc | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A / B ) ) e. ZZ ) |
| 21 | 20 | zcnd | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A / B ) ) e. CC ) |
| 22 | pcqcl | |- ( ( P e. Prime /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. ZZ ) |
|
| 23 | 22 | 3adant2 | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. ZZ ) |
| 24 | 23 | zcnd | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt B ) e. CC ) |
| 25 | 21 24 | pncand | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( ( P pCnt ( A / B ) ) + ( P pCnt B ) ) - ( P pCnt B ) ) = ( P pCnt ( A / B ) ) ) |
| 26 | 18 25 | eqtr2d | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A / B ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) ) |