This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The divisors of a nonzero integer are bounded by its absolute value. Theorem 1.1(i) in ApostolNT p. 14 (comparison property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011) (Proof shortened by Fan Zheng, 3-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsleabs | |- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N -> M <_ ( abs ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsabsb | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> M || ( abs ` N ) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N <-> M || ( abs ` N ) ) ) |
| 3 | nnabscl | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) |
|
| 4 | dvdsle | |- ( ( M e. ZZ /\ ( abs ` N ) e. NN ) -> ( M || ( abs ` N ) -> M <_ ( abs ` N ) ) ) |
|
| 5 | 3 4 | sylan2 | |- ( ( M e. ZZ /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( M || ( abs ` N ) -> M <_ ( abs ` N ) ) ) |
| 6 | 5 | 3impb | |- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || ( abs ` N ) -> M <_ ( abs ` N ) ) ) |
| 7 | 2 6 | sylbid | |- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M || N -> M <_ ( abs ` N ) ) ) |