This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pceu . (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcval.1 | |- S = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
|
| pcval.2 | |- T = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
||
| pceu.3 | |- U = sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) |
||
| pceu.4 | |- V = sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) |
||
| pceu.5 | |- ( ph -> P e. Prime ) |
||
| pceu.6 | |- ( ph -> N =/= 0 ) |
||
| pceu.7 | |- ( ph -> ( x e. ZZ /\ y e. NN ) ) |
||
| pceu.8 | |- ( ph -> N = ( x / y ) ) |
||
| pceu.9 | |- ( ph -> ( s e. ZZ /\ t e. NN ) ) |
||
| pceu.10 | |- ( ph -> N = ( s / t ) ) |
||
| Assertion | pceulem | |- ( ph -> ( S - T ) = ( U - V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcval.1 | |- S = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
|
| 2 | pcval.2 | |- T = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
|
| 3 | pceu.3 | |- U = sup ( { n e. NN0 | ( P ^ n ) || s } , RR , < ) |
|
| 4 | pceu.4 | |- V = sup ( { n e. NN0 | ( P ^ n ) || t } , RR , < ) |
|
| 5 | pceu.5 | |- ( ph -> P e. Prime ) |
|
| 6 | pceu.6 | |- ( ph -> N =/= 0 ) |
|
| 7 | pceu.7 | |- ( ph -> ( x e. ZZ /\ y e. NN ) ) |
|
| 8 | pceu.8 | |- ( ph -> N = ( x / y ) ) |
|
| 9 | pceu.9 | |- ( ph -> ( s e. ZZ /\ t e. NN ) ) |
|
| 10 | pceu.10 | |- ( ph -> N = ( s / t ) ) |
|
| 11 | 7 | simprd | |- ( ph -> y e. NN ) |
| 12 | 11 | nncnd | |- ( ph -> y e. CC ) |
| 13 | 9 | simpld | |- ( ph -> s e. ZZ ) |
| 14 | 13 | zcnd | |- ( ph -> s e. CC ) |
| 15 | 12 14 | mulcomd | |- ( ph -> ( y x. s ) = ( s x. y ) ) |
| 16 | 10 8 | eqtr3d | |- ( ph -> ( s / t ) = ( x / y ) ) |
| 17 | 9 | simprd | |- ( ph -> t e. NN ) |
| 18 | 17 | nncnd | |- ( ph -> t e. CC ) |
| 19 | 7 | simpld | |- ( ph -> x e. ZZ ) |
| 20 | 19 | zcnd | |- ( ph -> x e. CC ) |
| 21 | 17 | nnne0d | |- ( ph -> t =/= 0 ) |
| 22 | 11 | nnne0d | |- ( ph -> y =/= 0 ) |
| 23 | 14 18 20 12 21 22 | divmuleqd | |- ( ph -> ( ( s / t ) = ( x / y ) <-> ( s x. y ) = ( x x. t ) ) ) |
| 24 | 16 23 | mpbid | |- ( ph -> ( s x. y ) = ( x x. t ) ) |
| 25 | 15 24 | eqtrd | |- ( ph -> ( y x. s ) = ( x x. t ) ) |
| 26 | 25 | breq2d | |- ( ph -> ( ( P ^ z ) || ( y x. s ) <-> ( P ^ z ) || ( x x. t ) ) ) |
| 27 | 26 | rabbidv | |- ( ph -> { z e. NN0 | ( P ^ z ) || ( y x. s ) } = { z e. NN0 | ( P ^ z ) || ( x x. t ) } ) |
| 28 | oveq2 | |- ( n = z -> ( P ^ n ) = ( P ^ z ) ) |
|
| 29 | 28 | breq1d | |- ( n = z -> ( ( P ^ n ) || ( y x. s ) <-> ( P ^ z ) || ( y x. s ) ) ) |
| 30 | 29 | cbvrabv | |- { n e. NN0 | ( P ^ n ) || ( y x. s ) } = { z e. NN0 | ( P ^ z ) || ( y x. s ) } |
| 31 | 28 | breq1d | |- ( n = z -> ( ( P ^ n ) || ( x x. t ) <-> ( P ^ z ) || ( x x. t ) ) ) |
| 32 | 31 | cbvrabv | |- { n e. NN0 | ( P ^ n ) || ( x x. t ) } = { z e. NN0 | ( P ^ z ) || ( x x. t ) } |
| 33 | 27 30 32 | 3eqtr4g | |- ( ph -> { n e. NN0 | ( P ^ n ) || ( y x. s ) } = { n e. NN0 | ( P ^ n ) || ( x x. t ) } ) |
| 34 | 33 | supeq1d | |- ( ph -> sup ( { n e. NN0 | ( P ^ n ) || ( y x. s ) } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || ( x x. t ) } , RR , < ) ) |
| 35 | 11 | nnzd | |- ( ph -> y e. ZZ ) |
| 36 | 18 21 | div0d | |- ( ph -> ( 0 / t ) = 0 ) |
| 37 | oveq1 | |- ( s = 0 -> ( s / t ) = ( 0 / t ) ) |
|
| 38 | 37 | eqeq1d | |- ( s = 0 -> ( ( s / t ) = 0 <-> ( 0 / t ) = 0 ) ) |
| 39 | 36 38 | syl5ibrcom | |- ( ph -> ( s = 0 -> ( s / t ) = 0 ) ) |
| 40 | 10 | eqeq1d | |- ( ph -> ( N = 0 <-> ( s / t ) = 0 ) ) |
| 41 | 39 40 | sylibrd | |- ( ph -> ( s = 0 -> N = 0 ) ) |
| 42 | 41 | necon3d | |- ( ph -> ( N =/= 0 -> s =/= 0 ) ) |
| 43 | 6 42 | mpd | |- ( ph -> s =/= 0 ) |
| 44 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || ( y x. s ) } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || ( y x. s ) } , RR , < ) |
|
| 45 | 2 3 44 | pcpremul | |- ( ( P e. Prime /\ ( y e. ZZ /\ y =/= 0 ) /\ ( s e. ZZ /\ s =/= 0 ) ) -> ( T + U ) = sup ( { n e. NN0 | ( P ^ n ) || ( y x. s ) } , RR , < ) ) |
| 46 | 5 35 22 13 43 45 | syl122anc | |- ( ph -> ( T + U ) = sup ( { n e. NN0 | ( P ^ n ) || ( y x. s ) } , RR , < ) ) |
| 47 | 12 22 | div0d | |- ( ph -> ( 0 / y ) = 0 ) |
| 48 | oveq1 | |- ( x = 0 -> ( x / y ) = ( 0 / y ) ) |
|
| 49 | 48 | eqeq1d | |- ( x = 0 -> ( ( x / y ) = 0 <-> ( 0 / y ) = 0 ) ) |
| 50 | 47 49 | syl5ibrcom | |- ( ph -> ( x = 0 -> ( x / y ) = 0 ) ) |
| 51 | 8 | eqeq1d | |- ( ph -> ( N = 0 <-> ( x / y ) = 0 ) ) |
| 52 | 50 51 | sylibrd | |- ( ph -> ( x = 0 -> N = 0 ) ) |
| 53 | 52 | necon3d | |- ( ph -> ( N =/= 0 -> x =/= 0 ) ) |
| 54 | 6 53 | mpd | |- ( ph -> x =/= 0 ) |
| 55 | 17 | nnzd | |- ( ph -> t e. ZZ ) |
| 56 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || ( x x. t ) } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || ( x x. t ) } , RR , < ) |
|
| 57 | 1 4 56 | pcpremul | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ ( t e. ZZ /\ t =/= 0 ) ) -> ( S + V ) = sup ( { n e. NN0 | ( P ^ n ) || ( x x. t ) } , RR , < ) ) |
| 58 | 5 19 54 55 21 57 | syl122anc | |- ( ph -> ( S + V ) = sup ( { n e. NN0 | ( P ^ n ) || ( x x. t ) } , RR , < ) ) |
| 59 | 34 46 58 | 3eqtr4d | |- ( ph -> ( T + U ) = ( S + V ) ) |
| 60 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 61 | 5 60 | syl | |- ( ph -> P e. ( ZZ>= ` 2 ) ) |
| 62 | eqid | |- { n e. NN0 | ( P ^ n ) || y } = { n e. NN0 | ( P ^ n ) || y } |
|
| 63 | 62 2 | pcprecl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( y e. ZZ /\ y =/= 0 ) ) -> ( T e. NN0 /\ ( P ^ T ) || y ) ) |
| 64 | 63 | simpld | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( y e. ZZ /\ y =/= 0 ) ) -> T e. NN0 ) |
| 65 | 61 35 22 64 | syl12anc | |- ( ph -> T e. NN0 ) |
| 66 | 65 | nn0cnd | |- ( ph -> T e. CC ) |
| 67 | eqid | |- { n e. NN0 | ( P ^ n ) || s } = { n e. NN0 | ( P ^ n ) || s } |
|
| 68 | 67 3 | pcprecl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( s e. ZZ /\ s =/= 0 ) ) -> ( U e. NN0 /\ ( P ^ U ) || s ) ) |
| 69 | 68 | simpld | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( s e. ZZ /\ s =/= 0 ) ) -> U e. NN0 ) |
| 70 | 61 13 43 69 | syl12anc | |- ( ph -> U e. NN0 ) |
| 71 | 70 | nn0cnd | |- ( ph -> U e. CC ) |
| 72 | eqid | |- { n e. NN0 | ( P ^ n ) || x } = { n e. NN0 | ( P ^ n ) || x } |
|
| 73 | 72 1 | pcprecl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( S e. NN0 /\ ( P ^ S ) || x ) ) |
| 74 | 73 | simpld | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> S e. NN0 ) |
| 75 | 61 19 54 74 | syl12anc | |- ( ph -> S e. NN0 ) |
| 76 | 75 | nn0cnd | |- ( ph -> S e. CC ) |
| 77 | eqid | |- { n e. NN0 | ( P ^ n ) || t } = { n e. NN0 | ( P ^ n ) || t } |
|
| 78 | 77 4 | pcprecl | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( t e. ZZ /\ t =/= 0 ) ) -> ( V e. NN0 /\ ( P ^ V ) || t ) ) |
| 79 | 78 | simpld | |- ( ( P e. ( ZZ>= ` 2 ) /\ ( t e. ZZ /\ t =/= 0 ) ) -> V e. NN0 ) |
| 80 | 61 55 21 79 | syl12anc | |- ( ph -> V e. NN0 ) |
| 81 | 80 | nn0cnd | |- ( ph -> V e. CC ) |
| 82 | 66 71 76 81 | addsubeq4d | |- ( ph -> ( ( T + U ) = ( S + V ) <-> ( S - T ) = ( U - V ) ) ) |
| 83 | 59 82 | mpbid | |- ( ph -> ( S - T ) = ( U - V ) ) |