This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a power of a rational number is an integer, then the number is an integer. In other words, all n-th roots are irrational unless they are integers (so that the original number is an n-th power). (Contributed by Mario Carneiro, 10-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qexpz | |- ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) -> A e. ZZ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( A = 0 -> ( A e. ZZ <-> 0 e. ZZ ) ) |
|
| 2 | simpll2 | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> N e. NN ) |
|
| 3 | 2 | nncnd | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> N e. CC ) |
| 4 | 3 | mul01d | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> ( N x. 0 ) = 0 ) |
| 5 | simpr | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> p e. Prime ) |
|
| 6 | simpll3 | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> ( A ^ N ) e. ZZ ) |
|
| 7 | simpll1 | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> A e. QQ ) |
|
| 8 | qcn | |- ( A e. QQ -> A e. CC ) |
|
| 9 | 7 8 | syl | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> A e. CC ) |
| 10 | simplr | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> A =/= 0 ) |
|
| 11 | 2 | nnzd | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> N e. ZZ ) |
| 12 | 9 10 11 | expne0d | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> ( A ^ N ) =/= 0 ) |
| 13 | pczcl | |- ( ( p e. Prime /\ ( ( A ^ N ) e. ZZ /\ ( A ^ N ) =/= 0 ) ) -> ( p pCnt ( A ^ N ) ) e. NN0 ) |
|
| 14 | 5 6 12 13 | syl12anc | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> ( p pCnt ( A ^ N ) ) e. NN0 ) |
| 15 | 14 | nn0ge0d | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> 0 <_ ( p pCnt ( A ^ N ) ) ) |
| 16 | pcexp | |- ( ( p e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ N e. ZZ ) -> ( p pCnt ( A ^ N ) ) = ( N x. ( p pCnt A ) ) ) |
|
| 17 | 5 7 10 11 16 | syl121anc | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> ( p pCnt ( A ^ N ) ) = ( N x. ( p pCnt A ) ) ) |
| 18 | 15 17 | breqtrd | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> 0 <_ ( N x. ( p pCnt A ) ) ) |
| 19 | 4 18 | eqbrtrd | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> ( N x. 0 ) <_ ( N x. ( p pCnt A ) ) ) |
| 20 | 0red | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> 0 e. RR ) |
|
| 21 | pcqcl | |- ( ( p e. Prime /\ ( A e. QQ /\ A =/= 0 ) ) -> ( p pCnt A ) e. ZZ ) |
|
| 22 | 5 7 10 21 | syl12anc | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> ( p pCnt A ) e. ZZ ) |
| 23 | 22 | zred | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> ( p pCnt A ) e. RR ) |
| 24 | 2 | nnred | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> N e. RR ) |
| 25 | 2 | nngt0d | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> 0 < N ) |
| 26 | lemul2 | |- ( ( 0 e. RR /\ ( p pCnt A ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( 0 <_ ( p pCnt A ) <-> ( N x. 0 ) <_ ( N x. ( p pCnt A ) ) ) ) |
|
| 27 | 20 23 24 25 26 | syl112anc | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> ( 0 <_ ( p pCnt A ) <-> ( N x. 0 ) <_ ( N x. ( p pCnt A ) ) ) ) |
| 28 | 19 27 | mpbird | |- ( ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) /\ p e. Prime ) -> 0 <_ ( p pCnt A ) ) |
| 29 | 28 | ralrimiva | |- ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) -> A. p e. Prime 0 <_ ( p pCnt A ) ) |
| 30 | simpl1 | |- ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) -> A e. QQ ) |
|
| 31 | pcz | |- ( A e. QQ -> ( A e. ZZ <-> A. p e. Prime 0 <_ ( p pCnt A ) ) ) |
|
| 32 | 30 31 | syl | |- ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) -> ( A e. ZZ <-> A. p e. Prime 0 <_ ( p pCnt A ) ) ) |
| 33 | 29 32 | mpbird | |- ( ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) /\ A =/= 0 ) -> A e. ZZ ) |
| 34 | 0zd | |- ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) -> 0 e. ZZ ) |
|
| 35 | 1 33 34 | pm2.61ne | |- ( ( A e. QQ /\ N e. NN /\ ( A ^ N ) e. ZZ ) -> A e. ZZ ) |