This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a positive integer divides another integer, then the remainder upon division is zero. (Contributed by AV, 3-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmod0 | |- ( ( M e. NN /\ M || N ) -> ( N mod M ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl | |- ( M || N -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 2 | 1 | adantl | |- ( ( M e. NN /\ M || N ) -> ( M e. ZZ /\ N e. ZZ ) ) |
| 3 | dvdsval3 | |- ( ( M e. NN /\ N e. ZZ ) -> ( M || N <-> ( N mod M ) = 0 ) ) |
|
| 4 | 3 | biimpd | |- ( ( M e. NN /\ N e. ZZ ) -> ( M || N -> ( N mod M ) = 0 ) ) |
| 5 | 4 | expcom | |- ( N e. ZZ -> ( M e. NN -> ( M || N -> ( N mod M ) = 0 ) ) ) |
| 6 | 5 | impd | |- ( N e. ZZ -> ( ( M e. NN /\ M || N ) -> ( N mod M ) = 0 ) ) |
| 7 | 6 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M e. NN /\ M || N ) -> ( N mod M ) = 0 ) ) |
| 8 | 2 7 | mpcom | |- ( ( M e. NN /\ M || N ) -> ( N mod M ) = 0 ) |