This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is a scale of A by C , then A is a scale of B by 1 / C . (Contributed by Mario Carneiro, 22-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolsca.1 | |- ( ph -> A C_ RR ) |
|
| ovolsca.2 | |- ( ph -> C e. RR+ ) |
||
| ovolsca.3 | |- ( ph -> B = { x e. RR | ( C x. x ) e. A } ) |
||
| Assertion | sca2rab | |- ( ph -> A = { y e. RR | ( ( 1 / C ) x. y ) e. B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolsca.1 | |- ( ph -> A C_ RR ) |
|
| 2 | ovolsca.2 | |- ( ph -> C e. RR+ ) |
|
| 3 | ovolsca.3 | |- ( ph -> B = { x e. RR | ( C x. x ) e. A } ) |
|
| 4 | 1 | sseld | |- ( ph -> ( y e. A -> y e. RR ) ) |
| 5 | 4 | pm4.71rd | |- ( ph -> ( y e. A <-> ( y e. RR /\ y e. A ) ) ) |
| 6 | 3 | adantr | |- ( ( ph /\ y e. RR ) -> B = { x e. RR | ( C x. x ) e. A } ) |
| 7 | 6 | eleq2d | |- ( ( ph /\ y e. RR ) -> ( ( ( 1 / C ) x. y ) e. B <-> ( ( 1 / C ) x. y ) e. { x e. RR | ( C x. x ) e. A } ) ) |
| 8 | 2 | adantr | |- ( ( ph /\ y e. RR ) -> C e. RR+ ) |
| 9 | 8 | rprecred | |- ( ( ph /\ y e. RR ) -> ( 1 / C ) e. RR ) |
| 10 | remulcl | |- ( ( ( 1 / C ) e. RR /\ y e. RR ) -> ( ( 1 / C ) x. y ) e. RR ) |
|
| 11 | 9 10 | sylancom | |- ( ( ph /\ y e. RR ) -> ( ( 1 / C ) x. y ) e. RR ) |
| 12 | oveq2 | |- ( x = ( ( 1 / C ) x. y ) -> ( C x. x ) = ( C x. ( ( 1 / C ) x. y ) ) ) |
|
| 13 | 12 | eleq1d | |- ( x = ( ( 1 / C ) x. y ) -> ( ( C x. x ) e. A <-> ( C x. ( ( 1 / C ) x. y ) ) e. A ) ) |
| 14 | 13 | elrab3 | |- ( ( ( 1 / C ) x. y ) e. RR -> ( ( ( 1 / C ) x. y ) e. { x e. RR | ( C x. x ) e. A } <-> ( C x. ( ( 1 / C ) x. y ) ) e. A ) ) |
| 15 | 11 14 | syl | |- ( ( ph /\ y e. RR ) -> ( ( ( 1 / C ) x. y ) e. { x e. RR | ( C x. x ) e. A } <-> ( C x. ( ( 1 / C ) x. y ) ) e. A ) ) |
| 16 | simpr | |- ( ( ph /\ y e. RR ) -> y e. RR ) |
|
| 17 | 16 | recnd | |- ( ( ph /\ y e. RR ) -> y e. CC ) |
| 18 | 8 | rpcnd | |- ( ( ph /\ y e. RR ) -> C e. CC ) |
| 19 | 8 | rpne0d | |- ( ( ph /\ y e. RR ) -> C =/= 0 ) |
| 20 | 17 18 19 | divrec2d | |- ( ( ph /\ y e. RR ) -> ( y / C ) = ( ( 1 / C ) x. y ) ) |
| 21 | 20 | oveq2d | |- ( ( ph /\ y e. RR ) -> ( C x. ( y / C ) ) = ( C x. ( ( 1 / C ) x. y ) ) ) |
| 22 | 17 18 19 | divcan2d | |- ( ( ph /\ y e. RR ) -> ( C x. ( y / C ) ) = y ) |
| 23 | 21 22 | eqtr3d | |- ( ( ph /\ y e. RR ) -> ( C x. ( ( 1 / C ) x. y ) ) = y ) |
| 24 | 23 | eleq1d | |- ( ( ph /\ y e. RR ) -> ( ( C x. ( ( 1 / C ) x. y ) ) e. A <-> y e. A ) ) |
| 25 | 7 15 24 | 3bitrd | |- ( ( ph /\ y e. RR ) -> ( ( ( 1 / C ) x. y ) e. B <-> y e. A ) ) |
| 26 | 25 | pm5.32da | |- ( ph -> ( ( y e. RR /\ ( ( 1 / C ) x. y ) e. B ) <-> ( y e. RR /\ y e. A ) ) ) |
| 27 | 5 26 | bitr4d | |- ( ph -> ( y e. A <-> ( y e. RR /\ ( ( 1 / C ) x. y ) e. B ) ) ) |
| 28 | 27 | eqabdv | |- ( ph -> A = { y | ( y e. RR /\ ( ( 1 / C ) x. y ) e. B ) } ) |
| 29 | df-rab | |- { y e. RR | ( ( 1 / C ) x. y ) e. B } = { y | ( y e. RR /\ ( ( 1 / C ) x. y ) e. B ) } |
|
| 30 | 28 29 | eqtr4di | |- ( ph -> A = { y e. RR | ( ( 1 / C ) x. y ) e. B } ) |