This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cancellation law for division. ( divcan3 analog.) (Contributed by Mario Carneiro, 2-Jul-2014) (Revised by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrass.b | |- B = ( Base ` R ) |
|
| dvrass.o | |- U = ( Unit ` R ) |
||
| dvrass.d | |- ./ = ( /r ` R ) |
||
| dvrass.t | |- .x. = ( .r ` R ) |
||
| Assertion | dvrcan3 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X .x. Y ) ./ Y ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrass.b | |- B = ( Base ` R ) |
|
| 2 | dvrass.o | |- U = ( Unit ` R ) |
|
| 3 | dvrass.d | |- ./ = ( /r ` R ) |
|
| 4 | dvrass.t | |- .x. = ( .r ` R ) |
|
| 5 | simp1 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> R e. Ring ) |
|
| 6 | simp2 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> X e. B ) |
|
| 7 | 1 2 | unitcl | |- ( Y e. U -> Y e. B ) |
| 8 | 7 | 3ad2ant3 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> Y e. B ) |
| 9 | simp3 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> Y e. U ) |
|
| 10 | 1 2 3 4 | dvrass | |- ( ( R e. Ring /\ ( X e. B /\ Y e. B /\ Y e. U ) ) -> ( ( X .x. Y ) ./ Y ) = ( X .x. ( Y ./ Y ) ) ) |
| 11 | 5 6 8 9 10 | syl13anc | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X .x. Y ) ./ Y ) = ( X .x. ( Y ./ Y ) ) ) |
| 12 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 13 | 2 3 12 | dvrid | |- ( ( R e. Ring /\ Y e. U ) -> ( Y ./ Y ) = ( 1r ` R ) ) |
| 14 | 13 | 3adant2 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( Y ./ Y ) = ( 1r ` R ) ) |
| 15 | 14 | oveq2d | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X .x. ( Y ./ Y ) ) = ( X .x. ( 1r ` R ) ) ) |
| 16 | 1 4 12 | ringridm | |- ( ( R e. Ring /\ X e. B ) -> ( X .x. ( 1r ` R ) ) = X ) |
| 17 | 16 | 3adant3 | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( X .x. ( 1r ` R ) ) = X ) |
| 18 | 11 15 17 | 3eqtrd | |- ( ( R e. Ring /\ X e. B /\ Y e. U ) -> ( ( X .x. Y ) ./ Y ) = X ) |