This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered group, the ordering is compatible with group subtraction. (Contributed by Thierry Arnoux, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpsub.0 | |- B = ( Base ` G ) |
|
| ogrpsub.1 | |- .<_ = ( le ` G ) |
||
| ogrpsub.2 | |- .- = ( -g ` G ) |
||
| Assertion | ogrpsub | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( X .- Z ) .<_ ( Y .- Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpsub.0 | |- B = ( Base ` G ) |
|
| 2 | ogrpsub.1 | |- .<_ = ( le ` G ) |
|
| 3 | ogrpsub.2 | |- .- = ( -g ` G ) |
|
| 4 | isogrp | |- ( G e. oGrp <-> ( G e. Grp /\ G e. oMnd ) ) |
|
| 5 | 4 | simprbi | |- ( G e. oGrp -> G e. oMnd ) |
| 6 | 5 | 3ad2ant1 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> G e. oMnd ) |
| 7 | simp21 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> X e. B ) |
|
| 8 | simp22 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> Y e. B ) |
|
| 9 | ogrpgrp | |- ( G e. oGrp -> G e. Grp ) |
|
| 10 | 9 | 3ad2ant1 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> G e. Grp ) |
| 11 | simp23 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> Z e. B ) |
|
| 12 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 13 | 1 12 | grpinvcl | |- ( ( G e. Grp /\ Z e. B ) -> ( ( invg ` G ) ` Z ) e. B ) |
| 14 | 10 11 13 | syl2anc | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( ( invg ` G ) ` Z ) e. B ) |
| 15 | simp3 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> X .<_ Y ) |
|
| 16 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 17 | 1 2 16 | omndadd | |- ( ( G e. oMnd /\ ( X e. B /\ Y e. B /\ ( ( invg ` G ) ` Z ) e. B ) /\ X .<_ Y ) -> ( X ( +g ` G ) ( ( invg ` G ) ` Z ) ) .<_ ( Y ( +g ` G ) ( ( invg ` G ) ` Z ) ) ) |
| 18 | 6 7 8 14 15 17 | syl131anc | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( X ( +g ` G ) ( ( invg ` G ) ` Z ) ) .<_ ( Y ( +g ` G ) ( ( invg ` G ) ` Z ) ) ) |
| 19 | 1 16 12 3 | grpsubval | |- ( ( X e. B /\ Z e. B ) -> ( X .- Z ) = ( X ( +g ` G ) ( ( invg ` G ) ` Z ) ) ) |
| 20 | 7 11 19 | syl2anc | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( X .- Z ) = ( X ( +g ` G ) ( ( invg ` G ) ` Z ) ) ) |
| 21 | 1 16 12 3 | grpsubval | |- ( ( Y e. B /\ Z e. B ) -> ( Y .- Z ) = ( Y ( +g ` G ) ( ( invg ` G ) ` Z ) ) ) |
| 22 | 8 11 21 | syl2anc | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( Y .- Z ) = ( Y ( +g ` G ) ( ( invg ` G ) ` Z ) ) ) |
| 23 | 18 20 22 | 3brtr4d | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( X .- Z ) .<_ ( Y .- Z ) ) |