This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnunifi | |- ( ( S C_ _om /\ S e. Fin ) -> U. S e. _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq | |- ( S = (/) -> U. S = U. (/) ) |
|
| 2 | uni0 | |- U. (/) = (/) |
|
| 3 | peano1 | |- (/) e. _om |
|
| 4 | 2 3 | eqeltri | |- U. (/) e. _om |
| 5 | 1 4 | eqeltrdi | |- ( S = (/) -> U. S e. _om ) |
| 6 | 5 | adantl | |- ( ( ( S C_ _om /\ S e. Fin ) /\ S = (/) ) -> U. S e. _om ) |
| 7 | simpll | |- ( ( ( S C_ _om /\ S e. Fin ) /\ S =/= (/) ) -> S C_ _om ) |
|
| 8 | omsson | |- _om C_ On |
|
| 9 | 7 8 | sstrdi | |- ( ( ( S C_ _om /\ S e. Fin ) /\ S =/= (/) ) -> S C_ On ) |
| 10 | simplr | |- ( ( ( S C_ _om /\ S e. Fin ) /\ S =/= (/) ) -> S e. Fin ) |
|
| 11 | simpr | |- ( ( ( S C_ _om /\ S e. Fin ) /\ S =/= (/) ) -> S =/= (/) ) |
|
| 12 | ordunifi | |- ( ( S C_ On /\ S e. Fin /\ S =/= (/) ) -> U. S e. S ) |
|
| 13 | 9 10 11 12 | syl3anc | |- ( ( ( S C_ _om /\ S e. Fin ) /\ S =/= (/) ) -> U. S e. S ) |
| 14 | 7 13 | sseldd | |- ( ( ( S C_ _om /\ S e. Fin ) /\ S =/= (/) ) -> U. S e. _om ) |
| 15 | 6 14 | pm2.61dane | |- ( ( S C_ _om /\ S e. Fin ) -> U. S e. _om ) |