This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ordtype . (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtypelem.1 | |- F = recs ( G ) |
|
| ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
||
| ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
||
| ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
||
| ordtypelem.6 | |- O = OrdIso ( R , A ) |
||
| ordtypelem.7 | |- ( ph -> R We A ) |
||
| ordtypelem.8 | |- ( ph -> R Se A ) |
||
| Assertion | ordtypelem5 | |- ( ph -> ( Ord dom O /\ O : dom O --> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | |- F = recs ( G ) |
|
| 2 | ordtypelem.2 | |- C = { w e. A | A. j e. ran h j R w } |
|
| 3 | ordtypelem.3 | |- G = ( h e. _V |-> ( iota_ v e. C A. u e. C -. u R v ) ) |
|
| 4 | ordtypelem.5 | |- T = { x e. On | E. t e. A A. z e. ( F " x ) z R t } |
|
| 5 | ordtypelem.6 | |- O = OrdIso ( R , A ) |
|
| 6 | ordtypelem.7 | |- ( ph -> R We A ) |
|
| 7 | ordtypelem.8 | |- ( ph -> R Se A ) |
|
| 8 | 1 2 3 4 5 6 7 | ordtypelem2 | |- ( ph -> Ord T ) |
| 9 | 1 | tfr1a | |- ( Fun F /\ Lim dom F ) |
| 10 | 9 | simpri | |- Lim dom F |
| 11 | limord | |- ( Lim dom F -> Ord dom F ) |
|
| 12 | 10 11 | ax-mp | |- Ord dom F |
| 13 | ordin | |- ( ( Ord T /\ Ord dom F ) -> Ord ( T i^i dom F ) ) |
|
| 14 | 8 12 13 | sylancl | |- ( ph -> Ord ( T i^i dom F ) ) |
| 15 | 1 2 3 4 5 6 7 | ordtypelem4 | |- ( ph -> O : ( T i^i dom F ) --> A ) |
| 16 | 15 | fdmd | |- ( ph -> dom O = ( T i^i dom F ) ) |
| 17 | ordeq | |- ( dom O = ( T i^i dom F ) -> ( Ord dom O <-> Ord ( T i^i dom F ) ) ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( Ord dom O <-> Ord ( T i^i dom F ) ) ) |
| 19 | 14 18 | mpbird | |- ( ph -> Ord dom O ) |
| 20 | 15 | ffdmd | |- ( ph -> O : dom O --> A ) |
| 21 | 19 20 | jca | |- ( ph -> ( Ord dom O /\ O : dom O --> A ) ) |