This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unopab | |- ( { <. x , y >. | ph } u. { <. x , y >. | ps } ) = { <. x , y >. | ( ph \/ ps ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | |- ( z = w -> ( z = <. x , y >. <-> w = <. x , y >. ) ) |
|
| 2 | 1 | anbi1d | |- ( z = w -> ( ( z = <. x , y >. /\ ph ) <-> ( w = <. x , y >. /\ ph ) ) ) |
| 3 | 2 | 2exbidv | |- ( z = w -> ( E. x E. y ( z = <. x , y >. /\ ph ) <-> E. x E. y ( w = <. x , y >. /\ ph ) ) ) |
| 4 | 1 | anbi1d | |- ( z = w -> ( ( z = <. x , y >. /\ ps ) <-> ( w = <. x , y >. /\ ps ) ) ) |
| 5 | 4 | 2exbidv | |- ( z = w -> ( E. x E. y ( z = <. x , y >. /\ ps ) <-> E. x E. y ( w = <. x , y >. /\ ps ) ) ) |
| 6 | 3 5 | unabw | |- ( { z | E. x E. y ( z = <. x , y >. /\ ph ) } u. { z | E. x E. y ( z = <. x , y >. /\ ps ) } ) = { w | ( E. x E. y ( w = <. x , y >. /\ ph ) \/ E. x E. y ( w = <. x , y >. /\ ps ) ) } |
| 7 | 19.43 | |- ( E. x ( E. y ( w = <. x , y >. /\ ph ) \/ E. y ( w = <. x , y >. /\ ps ) ) <-> ( E. x E. y ( w = <. x , y >. /\ ph ) \/ E. x E. y ( w = <. x , y >. /\ ps ) ) ) |
|
| 8 | andi | |- ( ( w = <. x , y >. /\ ( ph \/ ps ) ) <-> ( ( w = <. x , y >. /\ ph ) \/ ( w = <. x , y >. /\ ps ) ) ) |
|
| 9 | 8 | exbii | |- ( E. y ( w = <. x , y >. /\ ( ph \/ ps ) ) <-> E. y ( ( w = <. x , y >. /\ ph ) \/ ( w = <. x , y >. /\ ps ) ) ) |
| 10 | 19.43 | |- ( E. y ( ( w = <. x , y >. /\ ph ) \/ ( w = <. x , y >. /\ ps ) ) <-> ( E. y ( w = <. x , y >. /\ ph ) \/ E. y ( w = <. x , y >. /\ ps ) ) ) |
|
| 11 | 9 10 | bitr2i | |- ( ( E. y ( w = <. x , y >. /\ ph ) \/ E. y ( w = <. x , y >. /\ ps ) ) <-> E. y ( w = <. x , y >. /\ ( ph \/ ps ) ) ) |
| 12 | 11 | exbii | |- ( E. x ( E. y ( w = <. x , y >. /\ ph ) \/ E. y ( w = <. x , y >. /\ ps ) ) <-> E. x E. y ( w = <. x , y >. /\ ( ph \/ ps ) ) ) |
| 13 | 7 12 | bitr3i | |- ( ( E. x E. y ( w = <. x , y >. /\ ph ) \/ E. x E. y ( w = <. x , y >. /\ ps ) ) <-> E. x E. y ( w = <. x , y >. /\ ( ph \/ ps ) ) ) |
| 14 | 13 | abbii | |- { w | ( E. x E. y ( w = <. x , y >. /\ ph ) \/ E. x E. y ( w = <. x , y >. /\ ps ) ) } = { w | E. x E. y ( w = <. x , y >. /\ ( ph \/ ps ) ) } |
| 15 | 6 14 | eqtri | |- ( { z | E. x E. y ( z = <. x , y >. /\ ph ) } u. { z | E. x E. y ( z = <. x , y >. /\ ps ) } ) = { w | E. x E. y ( w = <. x , y >. /\ ( ph \/ ps ) ) } |
| 16 | df-opab | |- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
|
| 17 | df-opab | |- { <. x , y >. | ps } = { z | E. x E. y ( z = <. x , y >. /\ ps ) } |
|
| 18 | 16 17 | uneq12i | |- ( { <. x , y >. | ph } u. { <. x , y >. | ps } ) = ( { z | E. x E. y ( z = <. x , y >. /\ ph ) } u. { z | E. x E. y ( z = <. x , y >. /\ ps ) } ) |
| 19 | df-opab | |- { <. x , y >. | ( ph \/ ps ) } = { w | E. x E. y ( w = <. x , y >. /\ ( ph \/ ps ) ) } |
|
| 20 | 15 18 19 | 3eqtr4i | |- ( { <. x , y >. | ph } u. { <. x , y >. | ps } ) = { <. x , y >. | ( ph \/ ps ) } |