This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of ordered power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrcrng.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| opsrcrng.i | |- ( ph -> I e. V ) |
||
| opsrcrng.r | |- ( ph -> R e. CRing ) |
||
| opsrcrng.t | |- ( ph -> T C_ ( I X. I ) ) |
||
| Assertion | opsrassa | |- ( ph -> O e. AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrcrng.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| 2 | opsrcrng.i | |- ( ph -> I e. V ) |
|
| 3 | opsrcrng.r | |- ( ph -> R e. CRing ) |
|
| 4 | opsrcrng.t | |- ( ph -> T C_ ( I X. I ) ) |
|
| 5 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 6 | 5 2 3 | psrassa | |- ( ph -> ( I mPwSer R ) e. AssAlg ) |
| 7 | eqidd | |- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) ) |
|
| 8 | 5 1 4 | opsrbas | |- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` O ) ) |
| 9 | 5 1 4 | opsrplusg | |- ( ph -> ( +g ` ( I mPwSer R ) ) = ( +g ` O ) ) |
| 10 | 9 | oveqdr | |- ( ( ph /\ ( x e. ( Base ` ( I mPwSer R ) ) /\ y e. ( Base ` ( I mPwSer R ) ) ) ) -> ( x ( +g ` ( I mPwSer R ) ) y ) = ( x ( +g ` O ) y ) ) |
| 11 | 5 1 4 | opsrmulr | |- ( ph -> ( .r ` ( I mPwSer R ) ) = ( .r ` O ) ) |
| 12 | 11 | oveqdr | |- ( ( ph /\ ( x e. ( Base ` ( I mPwSer R ) ) /\ y e. ( Base ` ( I mPwSer R ) ) ) ) -> ( x ( .r ` ( I mPwSer R ) ) y ) = ( x ( .r ` O ) y ) ) |
| 13 | 5 2 3 | psrsca | |- ( ph -> R = ( Scalar ` ( I mPwSer R ) ) ) |
| 14 | 5 1 4 2 3 | opsrsca | |- ( ph -> R = ( Scalar ` O ) ) |
| 15 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 16 | 5 1 4 | opsrvsca | |- ( ph -> ( .s ` ( I mPwSer R ) ) = ( .s ` O ) ) |
| 17 | 16 | oveqdr | |- ( ( ph /\ ( x e. ( Base ` R ) /\ y e. ( Base ` ( I mPwSer R ) ) ) ) -> ( x ( .s ` ( I mPwSer R ) ) y ) = ( x ( .s ` O ) y ) ) |
| 18 | 7 8 10 12 13 14 15 17 | assapropd | |- ( ph -> ( ( I mPwSer R ) e. AssAlg <-> O e. AssAlg ) ) |
| 19 | 6 18 | mpbid | |- ( ph -> O e. AssAlg ) |