This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of ordered power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrcrng.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| opsrcrng.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| opsrcrng.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| opsrcrng.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | ||
| Assertion | opsrassa | ⊢ ( 𝜑 → 𝑂 ∈ AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrcrng.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| 2 | opsrcrng.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | opsrcrng.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 4 | opsrcrng.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | |
| 5 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 6 | 5 2 3 | psrassa | ⊢ ( 𝜑 → ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ) |
| 7 | eqidd | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) | |
| 8 | 5 1 4 | opsrbas | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ 𝑂 ) ) |
| 9 | 5 1 4 | opsrplusg | ⊢ ( 𝜑 → ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( +g ‘ 𝑂 ) ) |
| 10 | 9 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ) |
| 11 | 5 1 4 | opsrmulr | ⊢ ( 𝜑 → ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( .r ‘ 𝑂 ) ) |
| 12 | 11 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( .r ‘ ( 𝐼 mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑂 ) 𝑦 ) ) |
| 13 | 5 2 3 | psrsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 14 | 5 1 4 2 3 | opsrsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑂 ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 16 | 5 1 4 | opsrvsca | ⊢ ( 𝜑 → ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( ·𝑠 ‘ 𝑂 ) ) |
| 17 | 16 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐼 mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑂 ) 𝑦 ) ) |
| 18 | 7 8 10 12 13 14 15 17 | assapropd | ⊢ ( 𝜑 → ( ( 𝐼 mPwSer 𝑅 ) ∈ AssAlg ↔ 𝑂 ∈ AssAlg ) ) |
| 19 | 6 18 | mpbid | ⊢ ( 𝜑 → 𝑂 ∈ AssAlg ) |