This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of ordered power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrcrng.o | ||
| opsrcrng.i | |||
| opsrcrng.r | |||
| opsrcrng.t | |||
| Assertion | opsrassa |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrcrng.o | ||
| 2 | opsrcrng.i | ||
| 3 | opsrcrng.r | ||
| 4 | opsrcrng.t | ||
| 5 | eqid | ||
| 6 | 5 2 3 | psrassa | |
| 7 | eqidd | ||
| 8 | 5 1 4 | opsrbas | |
| 9 | 5 1 4 | opsrplusg | |
| 10 | 9 | oveqdr | |
| 11 | 5 1 4 | opsrmulr | |
| 12 | 11 | oveqdr | |
| 13 | 5 2 3 | psrsca | |
| 14 | 5 1 4 2 3 | opsrsca | |
| 15 | eqid | ||
| 16 | 5 1 4 | opsrvsca | |
| 17 | 16 | oveqdr | |
| 18 | 7 8 10 12 13 14 15 17 | assapropd | |
| 19 | 6 18 | mpbid |