This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion. Special case of Theorem 9.5 of Quine p. 61. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker oprabidw when possible. (Contributed by Mario Carneiro, 20-Mar-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oprabid | |- ( <. <. x , y >. , z >. e. { <. <. x , y >. , z >. | ph } <-> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | |- <. <. x , y >. , z >. e. _V |
|
| 2 | opex | |- <. x , y >. e. _V |
|
| 3 | vex | |- z e. _V |
|
| 4 | 2 3 | eqvinop | |- ( w = <. <. x , y >. , z >. <-> E. a E. t ( w = <. a , t >. /\ <. a , t >. = <. <. x , y >. , z >. ) ) |
| 5 | 4 | biimpi | |- ( w = <. <. x , y >. , z >. -> E. a E. t ( w = <. a , t >. /\ <. a , t >. = <. <. x , y >. , z >. ) ) |
| 6 | eqeq1 | |- ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. <-> <. a , t >. = <. <. x , y >. , z >. ) ) |
|
| 7 | vex | |- a e. _V |
|
| 8 | vex | |- t e. _V |
|
| 9 | 7 8 | opth1 | |- ( <. a , t >. = <. <. x , y >. , z >. -> a = <. x , y >. ) |
| 10 | 6 9 | biimtrdi | |- ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> a = <. x , y >. ) ) |
| 11 | vex | |- x e. _V |
|
| 12 | vex | |- y e. _V |
|
| 13 | 11 12 | eqvinop | |- ( a = <. x , y >. <-> E. r E. s ( a = <. r , s >. /\ <. r , s >. = <. x , y >. ) ) |
| 14 | opeq1 | |- ( a = <. r , s >. -> <. a , t >. = <. <. r , s >. , t >. ) |
|
| 15 | 14 | eqeq2d | |- ( a = <. r , s >. -> ( w = <. a , t >. <-> w = <. <. r , s >. , t >. ) ) |
| 16 | 11 12 3 | otth2 | |- ( <. <. x , y >. , z >. = <. <. r , s >. , t >. <-> ( x = r /\ y = s /\ z = t ) ) |
| 17 | euequ | |- E! x x = r |
|
| 18 | eupick | |- ( ( E! x x = r /\ E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) -> ( x = r -> E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
|
| 19 | 17 18 | mpan | |- ( E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) -> ( x = r -> E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 20 | euequ | |- E! y y = s |
|
| 21 | eupick | |- ( ( E! y y = s /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) -> ( y = s -> E. z ( z = t /\ ph ) ) ) |
|
| 22 | 20 21 | mpan | |- ( E. y ( y = s /\ E. z ( z = t /\ ph ) ) -> ( y = s -> E. z ( z = t /\ ph ) ) ) |
| 23 | euequ | |- E! z z = t |
|
| 24 | eupick | |- ( ( E! z z = t /\ E. z ( z = t /\ ph ) ) -> ( z = t -> ph ) ) |
|
| 25 | 23 24 | mpan | |- ( E. z ( z = t /\ ph ) -> ( z = t -> ph ) ) |
| 26 | 22 25 | syl6 | |- ( E. y ( y = s /\ E. z ( z = t /\ ph ) ) -> ( y = s -> ( z = t -> ph ) ) ) |
| 27 | 19 26 | syl6 | |- ( E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) -> ( x = r -> ( y = s -> ( z = t -> ph ) ) ) ) |
| 28 | 27 | 3impd | |- ( E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) -> ( ( x = r /\ y = s /\ z = t ) -> ph ) ) |
| 29 | 16 28 | biimtrid | |- ( E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) -> ( <. <. x , y >. , z >. = <. <. r , s >. , t >. -> ph ) ) |
| 30 | df-3an | |- ( ( x = r /\ y = s /\ z = t ) <-> ( ( x = r /\ y = s ) /\ z = t ) ) |
|
| 31 | 16 30 | bitri | |- ( <. <. x , y >. , z >. = <. <. r , s >. , t >. <-> ( ( x = r /\ y = s ) /\ z = t ) ) |
| 32 | 31 | anbi1i | |- ( ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) <-> ( ( ( x = r /\ y = s ) /\ z = t ) /\ ph ) ) |
| 33 | anass | |- ( ( ( ( x = r /\ y = s ) /\ z = t ) /\ ph ) <-> ( ( x = r /\ y = s ) /\ ( z = t /\ ph ) ) ) |
|
| 34 | anass | |- ( ( ( x = r /\ y = s ) /\ ( z = t /\ ph ) ) <-> ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) ) |
|
| 35 | 32 33 34 | 3bitri | |- ( ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) <-> ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 36 | 35 | 3exbii | |- ( E. x E. y E. z ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) <-> E. x E. y E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 37 | nfcvf2 | |- ( -. A. x x = z -> F/_ z x ) |
|
| 38 | nfcvd | |- ( -. A. x x = z -> F/_ z r ) |
|
| 39 | 37 38 | nfeqd | |- ( -. A. x x = z -> F/ z x = r ) |
| 40 | 39 | exdistrf | |- ( E. x E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 41 | 40 | eximi | |- ( E. y E. x E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> E. y E. x ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 42 | excom | |- ( E. x E. y E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) <-> E. y E. x E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) ) |
|
| 43 | excom | |- ( E. x E. y ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) <-> E. y E. x ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
|
| 44 | 41 42 43 | 3imtr4i | |- ( E. x E. y E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> E. x E. y ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 45 | nfcvf2 | |- ( -. A. x x = y -> F/_ y x ) |
|
| 46 | nfcvd | |- ( -. A. x x = y -> F/_ y r ) |
|
| 47 | 45 46 | nfeqd | |- ( -. A. x x = y -> F/ y x = r ) |
| 48 | 47 | exdistrf | |- ( E. x E. y ( x = r /\ E. z ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) ) |
| 49 | nfcvf2 | |- ( -. A. y y = z -> F/_ z y ) |
|
| 50 | nfcvd | |- ( -. A. y y = z -> F/_ z s ) |
|
| 51 | 49 50 | nfeqd | |- ( -. A. y y = z -> F/ z y = s ) |
| 52 | 51 | exdistrf | |- ( E. y E. z ( y = s /\ ( z = t /\ ph ) ) -> E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) |
| 53 | 52 | anim2i | |- ( ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) -> ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 54 | 53 | eximi | |- ( E. x ( x = r /\ E. y E. z ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 55 | 44 48 54 | 3syl | |- ( E. x E. y E. z ( x = r /\ ( y = s /\ ( z = t /\ ph ) ) ) -> E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 56 | 36 55 | sylbi | |- ( E. x E. y E. z ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) -> E. x ( x = r /\ E. y ( y = s /\ E. z ( z = t /\ ph ) ) ) ) |
| 57 | 29 56 | syl11 | |- ( <. <. x , y >. , z >. = <. <. r , s >. , t >. -> ( E. x E. y E. z ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) -> ph ) ) |
| 58 | eqeq1 | |- ( w = <. <. r , s >. , t >. -> ( w = <. <. x , y >. , z >. <-> <. <. r , s >. , t >. = <. <. x , y >. , z >. ) ) |
|
| 59 | eqcom | |- ( <. <. r , s >. , t >. = <. <. x , y >. , z >. <-> <. <. x , y >. , z >. = <. <. r , s >. , t >. ) |
|
| 60 | 58 59 | bitrdi | |- ( w = <. <. r , s >. , t >. -> ( w = <. <. x , y >. , z >. <-> <. <. x , y >. , z >. = <. <. r , s >. , t >. ) ) |
| 61 | 60 | anbi1d | |- ( w = <. <. r , s >. , t >. -> ( ( w = <. <. x , y >. , z >. /\ ph ) <-> ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) ) ) |
| 62 | 61 | 3exbidv | |- ( w = <. <. r , s >. , t >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> E. x E. y E. z ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) ) ) |
| 63 | 62 | imbi1d | |- ( w = <. <. r , s >. , t >. -> ( ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) <-> ( E. x E. y E. z ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) -> ph ) ) ) |
| 64 | 60 63 | imbi12d | |- ( w = <. <. r , s >. , t >. -> ( ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) <-> ( <. <. x , y >. , z >. = <. <. r , s >. , t >. -> ( E. x E. y E. z ( <. <. x , y >. , z >. = <. <. r , s >. , t >. /\ ph ) -> ph ) ) ) ) |
| 65 | 57 64 | mpbiri | |- ( w = <. <. r , s >. , t >. -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) |
| 66 | 15 65 | biimtrdi | |- ( a = <. r , s >. -> ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) ) |
| 67 | 66 | adantr | |- ( ( a = <. r , s >. /\ <. r , s >. = <. x , y >. ) -> ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) ) |
| 68 | 67 | exlimivv | |- ( E. r E. s ( a = <. r , s >. /\ <. r , s >. = <. x , y >. ) -> ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) ) |
| 69 | 13 68 | sylbi | |- ( a = <. x , y >. -> ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) ) |
| 70 | 69 | com3l | |- ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> ( a = <. x , y >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) ) |
| 71 | 10 70 | mpdd | |- ( w = <. a , t >. -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) |
| 72 | 71 | adantr | |- ( ( w = <. a , t >. /\ <. a , t >. = <. <. x , y >. , z >. ) -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) |
| 73 | 72 | exlimivv | |- ( E. a E. t ( w = <. a , t >. /\ <. a , t >. = <. <. x , y >. , z >. ) -> ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) ) |
| 74 | 5 73 | mpcom | |- ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> ph ) ) |
| 75 | 19.8a | |- ( ( w = <. <. x , y >. , z >. /\ ph ) -> E. z ( w = <. <. x , y >. , z >. /\ ph ) ) |
|
| 76 | 19.8a | |- ( E. z ( w = <. <. x , y >. , z >. /\ ph ) -> E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) ) |
|
| 77 | 19.8a | |- ( E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) -> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) ) |
|
| 78 | 75 76 77 | 3syl | |- ( ( w = <. <. x , y >. , z >. /\ ph ) -> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) ) |
| 79 | 78 | ex | |- ( w = <. <. x , y >. , z >. -> ( ph -> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) ) ) |
| 80 | 74 79 | impbid | |- ( w = <. <. x , y >. , z >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> ph ) ) |
| 81 | df-oprab | |- { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } |
|
| 82 | 1 80 81 | elab2 | |- ( <. <. x , y >. , z >. e. { <. <. x , y >. , z >. | ph } <-> ph ) |