This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variable introduction law for ordered pairs. Analogue of Lemma 15 of Monk2 p. 109. (Contributed by NM, 28-May-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqvinop.1 | |- B e. _V |
|
| eqvinop.2 | |- C e. _V |
||
| Assertion | eqvinop | |- ( A = <. B , C >. <-> E. x E. y ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvinop.1 | |- B e. _V |
|
| 2 | eqvinop.2 | |- C e. _V |
|
| 3 | 1 2 | opth2 | |- ( <. x , y >. = <. B , C >. <-> ( x = B /\ y = C ) ) |
| 4 | 3 | anbi2i | |- ( ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) <-> ( A = <. x , y >. /\ ( x = B /\ y = C ) ) ) |
| 5 | ancom | |- ( ( A = <. x , y >. /\ ( x = B /\ y = C ) ) <-> ( ( x = B /\ y = C ) /\ A = <. x , y >. ) ) |
|
| 6 | anass | |- ( ( ( x = B /\ y = C ) /\ A = <. x , y >. ) <-> ( x = B /\ ( y = C /\ A = <. x , y >. ) ) ) |
|
| 7 | 4 5 6 | 3bitri | |- ( ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) <-> ( x = B /\ ( y = C /\ A = <. x , y >. ) ) ) |
| 8 | 7 | exbii | |- ( E. y ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) <-> E. y ( x = B /\ ( y = C /\ A = <. x , y >. ) ) ) |
| 9 | 19.42v | |- ( E. y ( x = B /\ ( y = C /\ A = <. x , y >. ) ) <-> ( x = B /\ E. y ( y = C /\ A = <. x , y >. ) ) ) |
|
| 10 | opeq2 | |- ( y = C -> <. x , y >. = <. x , C >. ) |
|
| 11 | 10 | eqeq2d | |- ( y = C -> ( A = <. x , y >. <-> A = <. x , C >. ) ) |
| 12 | 2 11 | ceqsexv | |- ( E. y ( y = C /\ A = <. x , y >. ) <-> A = <. x , C >. ) |
| 13 | 12 | anbi2i | |- ( ( x = B /\ E. y ( y = C /\ A = <. x , y >. ) ) <-> ( x = B /\ A = <. x , C >. ) ) |
| 14 | 8 9 13 | 3bitri | |- ( E. y ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) <-> ( x = B /\ A = <. x , C >. ) ) |
| 15 | 14 | exbii | |- ( E. x E. y ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) <-> E. x ( x = B /\ A = <. x , C >. ) ) |
| 16 | opeq1 | |- ( x = B -> <. x , C >. = <. B , C >. ) |
|
| 17 | 16 | eqeq2d | |- ( x = B -> ( A = <. x , C >. <-> A = <. B , C >. ) ) |
| 18 | 1 17 | ceqsexv | |- ( E. x ( x = B /\ A = <. x , C >. ) <-> A = <. B , C >. ) |
| 19 | 15 18 | bitr2i | |- ( A = <. B , C >. <-> E. x E. y ( A = <. x , y >. /\ <. x , y >. = <. B , C >. ) ) |