This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of existential quantifiers, with a bound-variable hypothesis saying that y is not free in ph , but x can be free in ph (and there is no distinct variable condition on x and y ). (Contributed by Mario Carneiro, 20-Mar-2013) (Proof shortened by Wolf Lammen, 14-May-2018) Usage of this theorem is discouraged because it depends on ax-13 . Use exdistr instead. (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | exdistrf.1 | |- ( -. A. x x = y -> F/ y ph ) |
|
| Assertion | exdistrf | |- ( E. x E. y ( ph /\ ps ) -> E. x ( ph /\ E. y ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrf.1 | |- ( -. A. x x = y -> F/ y ph ) |
|
| 2 | nfe1 | |- F/ x E. x ( ph /\ E. y ps ) |
|
| 3 | 19.8a | |- ( ps -> E. y ps ) |
|
| 4 | 3 | anim2i | |- ( ( ph /\ ps ) -> ( ph /\ E. y ps ) ) |
| 5 | 4 | eximi | |- ( E. y ( ph /\ ps ) -> E. y ( ph /\ E. y ps ) ) |
| 6 | biidd | |- ( A. x x = y -> ( ( ph /\ E. y ps ) <-> ( ph /\ E. y ps ) ) ) |
|
| 7 | 6 | drex1 | |- ( A. x x = y -> ( E. x ( ph /\ E. y ps ) <-> E. y ( ph /\ E. y ps ) ) ) |
| 8 | 5 7 | imbitrrid | |- ( A. x x = y -> ( E. y ( ph /\ ps ) -> E. x ( ph /\ E. y ps ) ) ) |
| 9 | 19.40 | |- ( E. y ( ph /\ ps ) -> ( E. y ph /\ E. y ps ) ) |
|
| 10 | 1 | 19.9d | |- ( -. A. x x = y -> ( E. y ph -> ph ) ) |
| 11 | 10 | anim1d | |- ( -. A. x x = y -> ( ( E. y ph /\ E. y ps ) -> ( ph /\ E. y ps ) ) ) |
| 12 | 19.8a | |- ( ( ph /\ E. y ps ) -> E. x ( ph /\ E. y ps ) ) |
|
| 13 | 9 11 12 | syl56 | |- ( -. A. x x = y -> ( E. y ( ph /\ ps ) -> E. x ( ph /\ E. y ps ) ) ) |
| 14 | 8 13 | pm2.61i | |- ( E. y ( ph /\ ps ) -> E. x ( ph /\ E. y ps ) ) |
| 15 | 2 14 | exlimi | |- ( E. x E. y ( ph /\ ps ) -> E. x ( ph /\ E. y ps ) ) |