This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered triple theorem, with triple expressed with ordered pairs. (Contributed by NM, 1-May-1995) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | otth.1 | |- A e. _V |
|
| otth.2 | |- B e. _V |
||
| otth.3 | |- R e. _V |
||
| Assertion | otth2 | |- ( <. <. A , B >. , R >. = <. <. C , D >. , S >. <-> ( A = C /\ B = D /\ R = S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | otth.1 | |- A e. _V |
|
| 2 | otth.2 | |- B e. _V |
|
| 3 | otth.3 | |- R e. _V |
|
| 4 | 1 2 | opth | |- ( <. A , B >. = <. C , D >. <-> ( A = C /\ B = D ) ) |
| 5 | 4 | anbi1i | |- ( ( <. A , B >. = <. C , D >. /\ R = S ) <-> ( ( A = C /\ B = D ) /\ R = S ) ) |
| 6 | opex | |- <. A , B >. e. _V |
|
| 7 | 6 3 | opth | |- ( <. <. A , B >. , R >. = <. <. C , D >. , S >. <-> ( <. A , B >. = <. C , D >. /\ R = S ) ) |
| 8 | df-3an | |- ( ( A = C /\ B = D /\ R = S ) <-> ( ( A = C /\ B = D ) /\ R = S ) ) |
|
| 9 | 5 7 8 | 3bitr4i | |- ( <. <. A , B >. , R >. = <. <. C , D >. , S >. <-> ( A = C /\ B = D /\ R = S ) ) |