This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity morphism, or identity arrow, of the category built from a monoid is the identity element of the monoid. (Contributed by Zhi Wang, 22-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtccat.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| mndtccat.m | |- ( ph -> M e. Mnd ) |
||
| mndtcid.b | |- ( ph -> B = ( Base ` C ) ) |
||
| mndtcid.x | |- ( ph -> X e. B ) |
||
| mndtcid.i | |- ( ph -> .1. = ( Id ` C ) ) |
||
| Assertion | mndtcid | |- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtccat.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| 2 | mndtccat.m | |- ( ph -> M e. Mnd ) |
|
| 3 | mndtcid.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 4 | mndtcid.x | |- ( ph -> X e. B ) |
|
| 5 | mndtcid.i | |- ( ph -> .1. = ( Id ` C ) ) |
|
| 6 | 1 2 | mndtccatid | |- ( ph -> ( C e. Cat /\ ( Id ` C ) = ( x e. ( Base ` C ) |-> ( 0g ` M ) ) ) ) |
| 7 | 6 | simprd | |- ( ph -> ( Id ` C ) = ( x e. ( Base ` C ) |-> ( 0g ` M ) ) ) |
| 8 | 5 7 | eqtrd | |- ( ph -> .1. = ( x e. ( Base ` C ) |-> ( 0g ` M ) ) ) |
| 9 | eqidd | |- ( ( ph /\ x = X ) -> ( 0g ` M ) = ( 0g ` M ) ) |
|
| 10 | 4 3 | eleqtrd | |- ( ph -> X e. ( Base ` C ) ) |
| 11 | fvexd | |- ( ph -> ( 0g ` M ) e. _V ) |
|
| 12 | 8 9 10 11 | fvmptd | |- ( ph -> ( .1. ` X ) = ( 0g ` M ) ) |