This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converted opposite monoid has the same hom-set as that of the opposite category. Example 3.6(2) of Adamek p. 25. (Contributed by Zhi Wang, 21-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtccat.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| mndtccat.m | |- ( ph -> M e. Mnd ) |
||
| oppgoppchom.d | |- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) |
||
| oppgoppchom.o | |- O = ( oppCat ` C ) |
||
| oppgoppchom.x | |- ( ph -> X e. ( Base ` D ) ) |
||
| oppgoppchom.y | |- ( ph -> Y e. ( Base ` O ) ) |
||
| oppgoppchom.h | |- ( ph -> H = ( Hom ` D ) ) |
||
| oppgoppchom.j | |- ( ph -> J = ( Hom ` O ) ) |
||
| Assertion | oppgoppchom | |- ( ph -> ( X H X ) = ( Y J Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtccat.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| 2 | mndtccat.m | |- ( ph -> M e. Mnd ) |
|
| 3 | oppgoppchom.d | |- ( ph -> D = ( MndToCat ` ( oppG ` M ) ) ) |
|
| 4 | oppgoppchom.o | |- O = ( oppCat ` C ) |
|
| 5 | oppgoppchom.x | |- ( ph -> X e. ( Base ` D ) ) |
|
| 6 | oppgoppchom.y | |- ( ph -> Y e. ( Base ` O ) ) |
|
| 7 | oppgoppchom.h | |- ( ph -> H = ( Hom ` D ) ) |
|
| 8 | oppgoppchom.j | |- ( ph -> J = ( Hom ` O ) ) |
|
| 9 | eqid | |- ( oppG ` M ) = ( oppG ` M ) |
|
| 10 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 11 | 9 10 | oppgbas | |- ( Base ` M ) = ( Base ` ( oppG ` M ) ) |
| 12 | 11 | a1i | |- ( ph -> ( Base ` M ) = ( Base ` ( oppG ` M ) ) ) |
| 13 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 14 | 4 13 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 15 | 14 | eqcomi | |- ( Base ` O ) = ( Base ` C ) |
| 16 | 15 | a1i | |- ( ph -> ( Base ` O ) = ( Base ` C ) ) |
| 17 | eqidd | |- ( ph -> ( Hom ` C ) = ( Hom ` C ) ) |
|
| 18 | 1 2 16 6 6 17 | mndtchom | |- ( ph -> ( Y ( Hom ` C ) Y ) = ( Base ` M ) ) |
| 19 | 9 | oppgmnd | |- ( M e. Mnd -> ( oppG ` M ) e. Mnd ) |
| 20 | 2 19 | syl | |- ( ph -> ( oppG ` M ) e. Mnd ) |
| 21 | eqidd | |- ( ph -> ( Base ` D ) = ( Base ` D ) ) |
|
| 22 | 3 20 21 5 5 7 | mndtchom | |- ( ph -> ( X H X ) = ( Base ` ( oppG ` M ) ) ) |
| 23 | 12 18 22 | 3eqtr4rd | |- ( ph -> ( X H X ) = ( Y ( Hom ` C ) Y ) ) |
| 24 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 25 | 24 4 | oppchom | |- ( Y ( Hom ` O ) Y ) = ( Y ( Hom ` C ) Y ) |
| 26 | 23 25 | eqtr4di | |- ( ph -> ( X H X ) = ( Y ( Hom ` O ) Y ) ) |
| 27 | 8 | oveqd | |- ( ph -> ( Y J Y ) = ( Y ( Hom ` O ) Y ) ) |
| 28 | 26 27 | eqtr4d | |- ( ph -> ( X H X ) = ( Y J Y ) ) |