This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only hom-set of the category built from a monoid is the base set of the monoid. (Contributed by Zhi Wang, 22-Sep-2024) (Proof shortened by Zhi Wang, 22-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| mndtcbas.m | |- ( ph -> M e. Mnd ) |
||
| mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
||
| mndtchom.x | |- ( ph -> X e. B ) |
||
| mndtchom.y | |- ( ph -> Y e. B ) |
||
| mndtchom.h | |- ( ph -> H = ( Hom ` C ) ) |
||
| Assertion | mndtchom | |- ( ph -> ( X H Y ) = ( Base ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtcbas.c | |- ( ph -> C = ( MndToCat ` M ) ) |
|
| 2 | mndtcbas.m | |- ( ph -> M e. Mnd ) |
|
| 3 | mndtcbas.b | |- ( ph -> B = ( Base ` C ) ) |
|
| 4 | mndtchom.x | |- ( ph -> X e. B ) |
|
| 5 | mndtchom.y | |- ( ph -> Y e. B ) |
|
| 6 | mndtchom.h | |- ( ph -> H = ( Hom ` C ) ) |
|
| 7 | 1 2 | mndtcval | |- ( ph -> C = { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } ) |
| 8 | catstr | |- { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } Struct <. 1 , ; 1 5 >. |
|
| 9 | homid | |- Hom = Slot ( Hom ` ndx ) |
|
| 10 | snsstp2 | |- { <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. } C_ { <. ( Base ` ndx ) , { M } >. , <. ( Hom ` ndx ) , { <. M , M , ( Base ` M ) >. } >. , <. ( comp ` ndx ) , { <. <. M , M , M >. , ( +g ` M ) >. } >. } |
|
| 11 | snex | |- { <. M , M , ( Base ` M ) >. } e. _V |
|
| 12 | 11 | a1i | |- ( ph -> { <. M , M , ( Base ` M ) >. } e. _V ) |
| 13 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 14 | 7 8 9 10 12 13 | strfv3 | |- ( ph -> ( Hom ` C ) = { <. M , M , ( Base ` M ) >. } ) |
| 15 | 6 14 | eqtrd | |- ( ph -> H = { <. M , M , ( Base ` M ) >. } ) |
| 16 | 1 2 3 4 | mndtcob | |- ( ph -> X = M ) |
| 17 | 1 2 3 5 | mndtcob | |- ( ph -> Y = M ) |
| 18 | 15 16 17 | oveq123d | |- ( ph -> ( X H Y ) = ( M { <. M , M , ( Base ` M ) >. } M ) ) |
| 19 | fvex | |- ( Base ` M ) e. _V |
|
| 20 | 19 | ovsn2 | |- ( M { <. M , M , ( Base ` M ) >. } M ) = ( Base ` M ) |
| 21 | 18 20 | eqtrdi | |- ( ph -> ( X H Y ) = ( Base ` M ) ) |