This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converted opposite monoid has the same hom-set as that of the opposite category. Example 3.6(2) of Adamek p. 25. (Contributed by Zhi Wang, 21-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtccat.c | ||
| mndtccat.m | |||
| oppgoppchom.d | |||
| oppgoppchom.o | |||
| oppgoppchom.x | |||
| oppgoppchom.y | |||
| oppgoppchom.h | |||
| oppgoppchom.j | |||
| Assertion | oppgoppchom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtccat.c | ||
| 2 | mndtccat.m | ||
| 3 | oppgoppchom.d | ||
| 4 | oppgoppchom.o | ||
| 5 | oppgoppchom.x | ||
| 6 | oppgoppchom.y | ||
| 7 | oppgoppchom.h | ||
| 8 | oppgoppchom.j | ||
| 9 | eqid | ||
| 10 | eqid | ||
| 11 | 9 10 | oppgbas | |
| 12 | 11 | a1i | |
| 13 | eqid | ||
| 14 | 4 13 | oppcbas | |
| 15 | 14 | eqcomi | |
| 16 | 15 | a1i | |
| 17 | eqidd | ||
| 18 | 1 2 16 6 6 17 | mndtchom | |
| 19 | 9 | oppgmnd | |
| 20 | 2 19 | syl | |
| 21 | eqidd | ||
| 22 | 3 20 21 5 5 7 | mndtchom | |
| 23 | 12 18 22 | 3eqtr4rd | |
| 24 | eqid | ||
| 25 | 24 4 | oppchom | |
| 26 | 23 25 | eqtr4di | |
| 27 | 8 | oveqd | |
| 28 | 26 27 | eqtr4d |