This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converted opposite monoid has the same hom-set as that of the opposite category. Example 3.6(2) of Adamek p. 25. (Contributed by Zhi Wang, 21-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndtccat.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
| mndtccat.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | ||
| oppgoppchom.d | ⊢ ( 𝜑 → 𝐷 = ( MndToCat ‘ ( oppg ‘ 𝑀 ) ) ) | ||
| oppgoppchom.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| oppgoppchom.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) | ||
| oppgoppchom.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑂 ) ) | ||
| oppgoppchom.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐷 ) ) | ||
| oppgoppchom.j | ⊢ ( 𝜑 → 𝐽 = ( Hom ‘ 𝑂 ) ) | ||
| Assertion | oppgoppchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( 𝑌 𝐽 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndtccat.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
| 2 | mndtccat.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | |
| 3 | oppgoppchom.d | ⊢ ( 𝜑 → 𝐷 = ( MndToCat ‘ ( oppg ‘ 𝑀 ) ) ) | |
| 4 | oppgoppchom.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 5 | oppgoppchom.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐷 ) ) | |
| 6 | oppgoppchom.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑂 ) ) | |
| 7 | oppgoppchom.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐷 ) ) | |
| 8 | oppgoppchom.j | ⊢ ( 𝜑 → 𝐽 = ( Hom ‘ 𝑂 ) ) | |
| 9 | eqid | ⊢ ( oppg ‘ 𝑀 ) = ( oppg ‘ 𝑀 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 11 | 9 10 | oppgbas | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ ( oppg ‘ 𝑀 ) ) |
| 12 | 11 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝑀 ) = ( Base ‘ ( oppg ‘ 𝑀 ) ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 14 | 4 13 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 15 | 14 | eqcomi | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝐶 ) |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝑂 ) = ( Base ‘ 𝐶 ) ) |
| 17 | eqidd | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) | |
| 18 | 1 2 16 6 6 17 | mndtchom | ⊢ ( 𝜑 → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑌 ) = ( Base ‘ 𝑀 ) ) |
| 19 | 9 | oppgmnd | ⊢ ( 𝑀 ∈ Mnd → ( oppg ‘ 𝑀 ) ∈ Mnd ) |
| 20 | 2 19 | syl | ⊢ ( 𝜑 → ( oppg ‘ 𝑀 ) ∈ Mnd ) |
| 21 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) ) | |
| 22 | 3 20 21 5 5 7 | mndtchom | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( Base ‘ ( oppg ‘ 𝑀 ) ) ) |
| 23 | 12 18 22 | 3eqtr4rd | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( 𝑌 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 24 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 25 | 24 4 | oppchom | ⊢ ( 𝑌 ( Hom ‘ 𝑂 ) 𝑌 ) = ( 𝑌 ( Hom ‘ 𝐶 ) 𝑌 ) |
| 26 | 23 25 | eqtr4di | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( 𝑌 ( Hom ‘ 𝑂 ) 𝑌 ) ) |
| 27 | 8 | oveqd | ⊢ ( 𝜑 → ( 𝑌 𝐽 𝑌 ) = ( 𝑌 ( Hom ‘ 𝑂 ) 𝑌 ) ) |
| 28 | 26 27 | eqtr4d | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑋 ) = ( 𝑌 𝐽 𝑌 ) ) |