This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | initoval.c | |- ( ph -> C e. Cat ) |
|
| initoval.b | |- B = ( Base ` C ) |
||
| initoval.h | |- H = ( Hom ` C ) |
||
| Assertion | zerooval | |- ( ph -> ( ZeroO ` C ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | initoval.c | |- ( ph -> C e. Cat ) |
|
| 2 | initoval.b | |- B = ( Base ` C ) |
|
| 3 | initoval.h | |- H = ( Hom ` C ) |
|
| 4 | df-zeroo | |- ZeroO = ( c e. Cat |-> ( ( InitO ` c ) i^i ( TermO ` c ) ) ) |
|
| 5 | fveq2 | |- ( c = C -> ( InitO ` c ) = ( InitO ` C ) ) |
|
| 6 | fveq2 | |- ( c = C -> ( TermO ` c ) = ( TermO ` C ) ) |
|
| 7 | 5 6 | ineq12d | |- ( c = C -> ( ( InitO ` c ) i^i ( TermO ` c ) ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) |
| 8 | fvex | |- ( InitO ` C ) e. _V |
|
| 9 | 8 | inex1 | |- ( ( InitO ` C ) i^i ( TermO ` C ) ) e. _V |
| 10 | 9 | a1i | |- ( ph -> ( ( InitO ` C ) i^i ( TermO ` C ) ) e. _V ) |
| 11 | 4 7 1 10 | fvmptd3 | |- ( ph -> ( ZeroO ` C ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) |