This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ismgm as of 3-Feb-2020. The predicate "is a magma". (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ismgmOLD.1 | |- X = dom dom G |
|
| Assertion | ismgmOLD | |- ( G e. A -> ( G e. Magma <-> G : ( X X. X ) --> X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmOLD.1 | |- X = dom dom G |
|
| 2 | feq1 | |- ( g = G -> ( g : ( t X. t ) --> t <-> G : ( t X. t ) --> t ) ) |
|
| 3 | 2 | exbidv | |- ( g = G -> ( E. t g : ( t X. t ) --> t <-> E. t G : ( t X. t ) --> t ) ) |
| 4 | df-mgmOLD | |- Magma = { g | E. t g : ( t X. t ) --> t } |
|
| 5 | 3 4 | elab2g | |- ( G e. A -> ( G e. Magma <-> E. t G : ( t X. t ) --> t ) ) |
| 6 | f00 | |- ( G : ( (/) X. (/) ) --> (/) <-> ( G = (/) /\ ( (/) X. (/) ) = (/) ) ) |
|
| 7 | dmeq | |- ( G = (/) -> dom G = dom (/) ) |
|
| 8 | dmeq | |- ( dom G = dom (/) -> dom dom G = dom dom (/) ) |
|
| 9 | dm0 | |- dom (/) = (/) |
|
| 10 | 9 | dmeqi | |- dom dom (/) = dom (/) |
| 11 | 10 9 | eqtri | |- dom dom (/) = (/) |
| 12 | 8 11 | eqtr2di | |- ( dom G = dom (/) -> (/) = dom dom G ) |
| 13 | 7 12 | syl | |- ( G = (/) -> (/) = dom dom G ) |
| 14 | 13 | adantr | |- ( ( G = (/) /\ ( (/) X. (/) ) = (/) ) -> (/) = dom dom G ) |
| 15 | 6 14 | sylbi | |- ( G : ( (/) X. (/) ) --> (/) -> (/) = dom dom G ) |
| 16 | xpeq12 | |- ( ( t = (/) /\ t = (/) ) -> ( t X. t ) = ( (/) X. (/) ) ) |
|
| 17 | 16 | anidms | |- ( t = (/) -> ( t X. t ) = ( (/) X. (/) ) ) |
| 18 | feq23 | |- ( ( ( t X. t ) = ( (/) X. (/) ) /\ t = (/) ) -> ( G : ( t X. t ) --> t <-> G : ( (/) X. (/) ) --> (/) ) ) |
|
| 19 | 17 18 | mpancom | |- ( t = (/) -> ( G : ( t X. t ) --> t <-> G : ( (/) X. (/) ) --> (/) ) ) |
| 20 | eqeq1 | |- ( t = (/) -> ( t = dom dom G <-> (/) = dom dom G ) ) |
|
| 21 | 19 20 | imbi12d | |- ( t = (/) -> ( ( G : ( t X. t ) --> t -> t = dom dom G ) <-> ( G : ( (/) X. (/) ) --> (/) -> (/) = dom dom G ) ) ) |
| 22 | 15 21 | mpbiri | |- ( t = (/) -> ( G : ( t X. t ) --> t -> t = dom dom G ) ) |
| 23 | fdm | |- ( G : ( t X. t ) --> t -> dom G = ( t X. t ) ) |
|
| 24 | dmeq | |- ( dom G = ( t X. t ) -> dom dom G = dom ( t X. t ) ) |
|
| 25 | df-ne | |- ( t =/= (/) <-> -. t = (/) ) |
|
| 26 | dmxp | |- ( t =/= (/) -> dom ( t X. t ) = t ) |
|
| 27 | 25 26 | sylbir | |- ( -. t = (/) -> dom ( t X. t ) = t ) |
| 28 | 27 | eqeq1d | |- ( -. t = (/) -> ( dom ( t X. t ) = dom dom G <-> t = dom dom G ) ) |
| 29 | 28 | biimpcd | |- ( dom ( t X. t ) = dom dom G -> ( -. t = (/) -> t = dom dom G ) ) |
| 30 | 29 | eqcoms | |- ( dom dom G = dom ( t X. t ) -> ( -. t = (/) -> t = dom dom G ) ) |
| 31 | 23 24 30 | 3syl | |- ( G : ( t X. t ) --> t -> ( -. t = (/) -> t = dom dom G ) ) |
| 32 | 31 | com12 | |- ( -. t = (/) -> ( G : ( t X. t ) --> t -> t = dom dom G ) ) |
| 33 | 22 32 | pm2.61i | |- ( G : ( t X. t ) --> t -> t = dom dom G ) |
| 34 | 33 | pm4.71ri | |- ( G : ( t X. t ) --> t <-> ( t = dom dom G /\ G : ( t X. t ) --> t ) ) |
| 35 | 34 | exbii | |- ( E. t G : ( t X. t ) --> t <-> E. t ( t = dom dom G /\ G : ( t X. t ) --> t ) ) |
| 36 | 5 35 | bitrdi | |- ( G e. A -> ( G e. Magma <-> E. t ( t = dom dom G /\ G : ( t X. t ) --> t ) ) ) |
| 37 | dmexg | |- ( G e. A -> dom G e. _V ) |
|
| 38 | dmexg | |- ( dom G e. _V -> dom dom G e. _V ) |
|
| 39 | xpeq12 | |- ( ( t = dom dom G /\ t = dom dom G ) -> ( t X. t ) = ( dom dom G X. dom dom G ) ) |
|
| 40 | 39 | anidms | |- ( t = dom dom G -> ( t X. t ) = ( dom dom G X. dom dom G ) ) |
| 41 | feq23 | |- ( ( ( t X. t ) = ( dom dom G X. dom dom G ) /\ t = dom dom G ) -> ( G : ( t X. t ) --> t <-> G : ( dom dom G X. dom dom G ) --> dom dom G ) ) |
|
| 42 | 40 41 | mpancom | |- ( t = dom dom G -> ( G : ( t X. t ) --> t <-> G : ( dom dom G X. dom dom G ) --> dom dom G ) ) |
| 43 | 1 | eqcomi | |- dom dom G = X |
| 44 | 43 43 | xpeq12i | |- ( dom dom G X. dom dom G ) = ( X X. X ) |
| 45 | 44 43 | feq23i | |- ( G : ( dom dom G X. dom dom G ) --> dom dom G <-> G : ( X X. X ) --> X ) |
| 46 | 42 45 | bitrdi | |- ( t = dom dom G -> ( G : ( t X. t ) --> t <-> G : ( X X. X ) --> X ) ) |
| 47 | 46 | ceqsexgv | |- ( dom dom G e. _V -> ( E. t ( t = dom dom G /\ G : ( t X. t ) --> t ) <-> G : ( X X. X ) --> X ) ) |
| 48 | 37 38 47 | 3syl | |- ( G e. A -> ( E. t ( t = dom dom G /\ G : ( t X. t ) --> t ) <-> G : ( X X. X ) --> X ) ) |
| 49 | 36 48 | bitrd | |- ( G e. A -> ( G e. Magma <-> G : ( X X. X ) --> X ) ) |