This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 11-Oct-2013) (Revised by AV, 23-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndpf.b | |- B = ( Base ` G ) |
|
| mndpf.p | |- .+^ = ( +f ` G ) |
||
| Assertion | mndpfo | |- ( G e. Mnd -> .+^ : ( B X. B ) -onto-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndpf.b | |- B = ( Base ` G ) |
|
| 2 | mndpf.p | |- .+^ = ( +f ` G ) |
|
| 3 | 1 2 | mndplusf | |- ( G e. Mnd -> .+^ : ( B X. B ) --> B ) |
| 4 | simpr | |- ( ( G e. Mnd /\ x e. B ) -> x e. B ) |
|
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | 1 5 | mndidcl | |- ( G e. Mnd -> ( 0g ` G ) e. B ) |
| 7 | 6 | adantr | |- ( ( G e. Mnd /\ x e. B ) -> ( 0g ` G ) e. B ) |
| 8 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 9 | 1 8 5 | mndrid | |- ( ( G e. Mnd /\ x e. B ) -> ( x ( +g ` G ) ( 0g ` G ) ) = x ) |
| 10 | 9 | eqcomd | |- ( ( G e. Mnd /\ x e. B ) -> x = ( x ( +g ` G ) ( 0g ` G ) ) ) |
| 11 | rspceov | |- ( ( x e. B /\ ( 0g ` G ) e. B /\ x = ( x ( +g ` G ) ( 0g ` G ) ) ) -> E. y e. B E. z e. B x = ( y ( +g ` G ) z ) ) |
|
| 12 | 4 7 10 11 | syl3anc | |- ( ( G e. Mnd /\ x e. B ) -> E. y e. B E. z e. B x = ( y ( +g ` G ) z ) ) |
| 13 | 1 8 2 | plusfval | |- ( ( y e. B /\ z e. B ) -> ( y .+^ z ) = ( y ( +g ` G ) z ) ) |
| 14 | 13 | eqeq2d | |- ( ( y e. B /\ z e. B ) -> ( x = ( y .+^ z ) <-> x = ( y ( +g ` G ) z ) ) ) |
| 15 | 14 | 2rexbiia | |- ( E. y e. B E. z e. B x = ( y .+^ z ) <-> E. y e. B E. z e. B x = ( y ( +g ` G ) z ) ) |
| 16 | 12 15 | sylibr | |- ( ( G e. Mnd /\ x e. B ) -> E. y e. B E. z e. B x = ( y .+^ z ) ) |
| 17 | 16 | ralrimiva | |- ( G e. Mnd -> A. x e. B E. y e. B E. z e. B x = ( y .+^ z ) ) |
| 18 | foov | |- ( .+^ : ( B X. B ) -onto-> B <-> ( .+^ : ( B X. B ) --> B /\ A. x e. B E. y e. B E. z e. B x = ( y .+^ z ) ) ) |
|
| 19 | 3 17 18 | sylanbrc | |- ( G e. Mnd -> .+^ : ( B X. B ) -onto-> B ) |